

Arduino ou la démocratisation des microcontrôleurs

Professeur Agrégé

Institut d'Optique Graduate School / Palaiseau Laboratoire d'Enseignement Expérimental Co-responsable des Travaux Pratiques Electronique / Informatique

http://lense.institutoptique.fr/ipho/

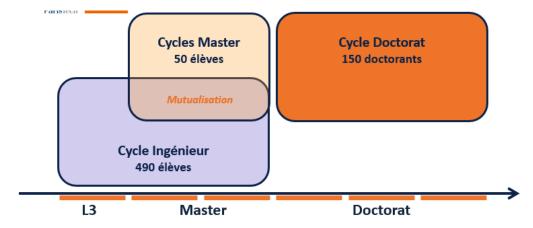
Arduino ou la démocratisation des microcontrôleurs

- Présentation de l'Institut d'Optique
- Informatique et systèmes embarqués
- Introduction à Arduino
- Atelier pratique

Julien VILLEMEJANE

Professeur Agrégé

Institut d'Optique Graduate School / Palaiseau Laboratoire d'Enseignement Expérimental Co-responsable des Travaux Pratiques Electronique / Informatique

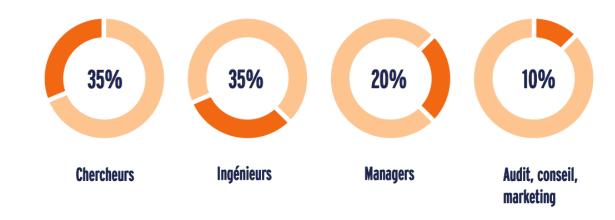

http://lense.institutoptique.fr/ipho/

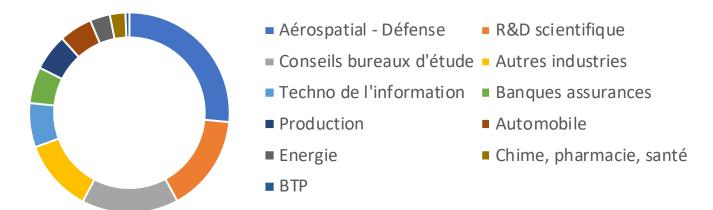
L'Institut d'Optique Graduate School

Graduate School en photonique

Plus de 1000 personnes pour développer la photonique

- 490 élèves en cycle Ingénieur + 25 en Master
- 150 doctorants
- 130 Chercheurs et Enseignants-chercheurs
- 100 Ingénieurs, techniciens et administratifs
- 210 personnes en innovation et entrepreneurs


Sur 3 piliers : Formation, Recherche, Innovation-Entrepreneuriat


Sur 3 sites: Paris Saclay, Bordeaux, St Etienne

Graduate School en photonique

La photonique

La photonique

1997-2018 : prix Nobel liés à la photonique :

10 prix Nobel de physique (dont 3 français) 2 prix Nobel de chimie

1997 : Refroidissement d'atomes avec de la lumière

1999: Lasers femtosecondes pour la chimie

2000 : Semi-conducteurs pour l'opto-électronique

2001 : Condensat de Bose-Einstein

2005 : Spectroscopie laser et peigne de fréquence

2009 : Communications par fibres optiques et capteurs CCD

2012 : Mesure et manipulation de systèmes quantiques

2014 : LED bleues

2014 : Microscopie de fluorescence à haute résolution

2017 : Détection des ondes gravitationnelles

2018 : Génération d'impulsions optiques ultra-courtes et de haute intensité

Pinces optiques et leur application aux systèmes biologiques

YEAR OF LIGHT 2015

La photonique

Fonctions

Aquérir de l'information Transmettre de l'information

Délivrer de l'information

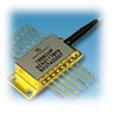
Eclairer

Apporter de l'énergie

Produire

Types de systèmes Capteurs et imageurs

systèmes de communication


Ecrans, projecteurs...

LED, éclairage

Photovoltaïque

Lasers

Exemples

ParisTech

INSTITUT

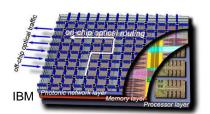
La photonique / Exemples

Phares intelligents

LEnsE

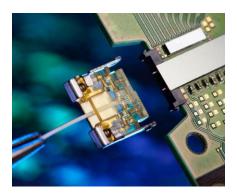
Laboratoire d'Enseignement Expérimental

Informatique et Systèmes embarqués


Laserscanner Video Top View Mid Range Radar

Autour de vous! Elec / Info / Embarqué

http://www.leseclairagistesassocies.com


AUDI

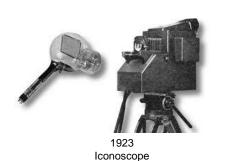
ONICE POCA

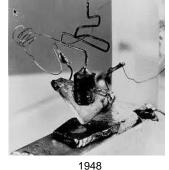
" OUVREZ LES YEUX

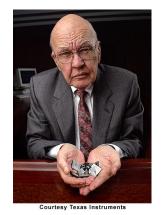
IPSR

Studyrama - 6979

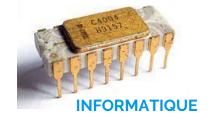
Drone AirSelfie


Moto 360 watch Android Wear




Les prémices de l'informatique

ELECTRON

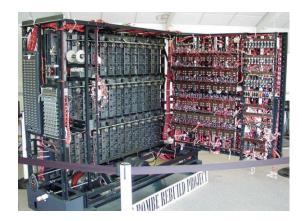


ELECTRONIQUE

Transistor

1959
MICRO- Circuits intégrés
ELECTRONIQUE

1972 Intel 4004



Informatique / Pour quoi faire?

1652 La PASCALINE

- Aide aux calculs
- Traitement de l'information
- Automatisation de calculs / de tâches
- **Télécommunications**
- Stockage de l'information

1940 La BOMBE / Turing

2000 **ASIMO**

2014 GOOGLE / Datacenter

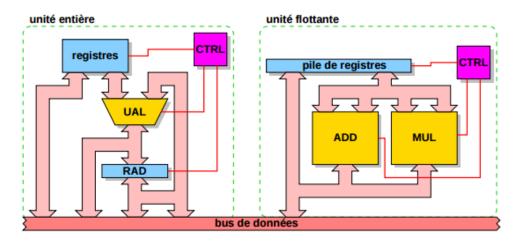
2016 GOOGLE / Datacenter

LEnsE

d'Enseignement Expérimental

Informatique / Industrielle / Embarquée

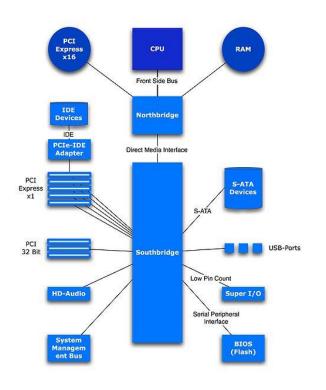
Informatique / Comment?

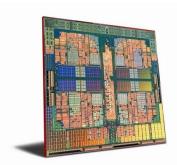

- Calculateur / Machine

PROCESSEUR

- Exécution séquentielle d'instructions
- Unité(s) de calculs
 précablée(s)

AMD Phenom - 4 coeurs - 3.4 GHz





Informatique / Comment?

Calculateur / Machine

PROCESSEUR

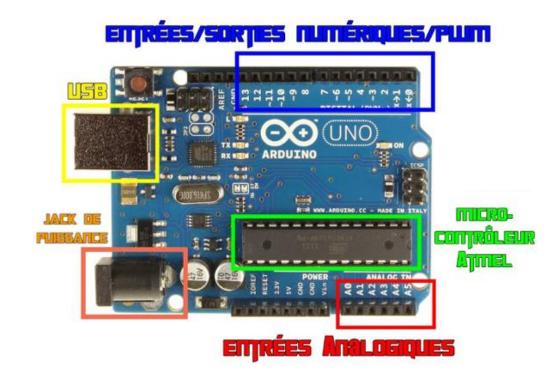
AMD Phenom - 4 coeurs - 3.4 GHz

- Exécution séquentielle d'instructions
- Unité(s) de calculs précablée(s)

MÉMOIRES

 Stockage temporaire mais rapide

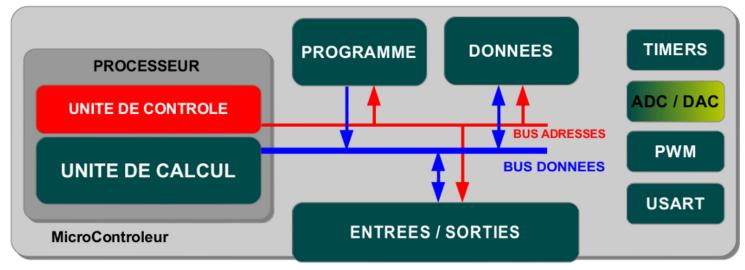
Stockage à long terme mais "lent"



ARDUINO Bases de programmation

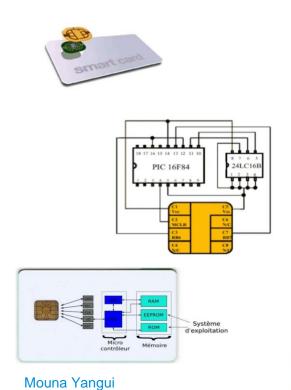
Qu'est-ce qu'une carte Arduino?

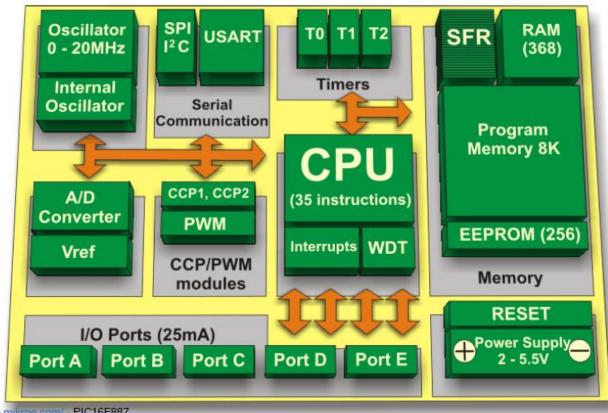
- Microcontrôleur
- Alimentation
- Téléversement
- Entrées / Sorties



Qu'est-ce qu'un microcontrôleur?

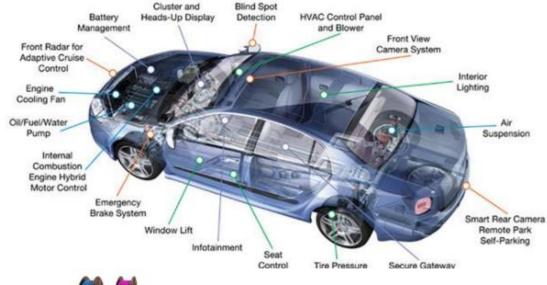
- Processeur spécialisé
- Entrées / Sorties réactives





Qu'est-ce qu'un microcontrôleur?

- Processeur spécialisé
- Entrées / Sorties réactives



http://learn.mikroe.com/ - PIC16F887

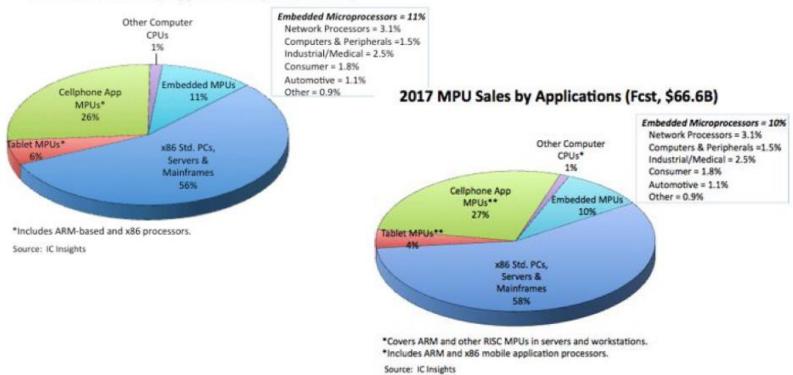
Où sont-ils utilisés?

- Système embarqué
- Capteurs intelligents

Et par rapport à un PC?

• Processeurs généralistes vs Processeurs embarqués

	PC standard	ARDUINO Uno
Fréquence	2 GHz	16 MHz
Core / Architecture	4 / 64 bits	1 / 8 bits
Consommation	100 à 500 W	< 1 W
Entrées/Sorties	/	6 Analog / 13 Digital
Ports extension	USB, PCI	SPI, I2C, RS232
RAM	4 Go	2 ko



Et par rapport à un PC?

Processeurs généralistes vs Processeurs embarqués

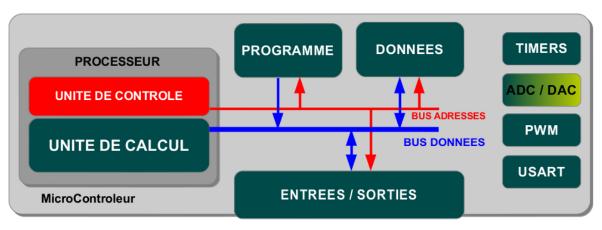
2013 MPU Sales by Applications (Fcst, \$61.0B)

Revenons à Arduino

Accès à des entrées/sorties réactives

ARDUINO Uno

16 MHz

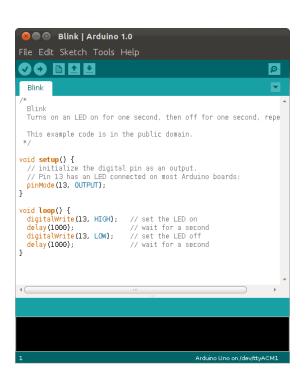

1 core / 8 bits

< 1 W

6 Analog / 13 Digital

SPI, I2C, RS232

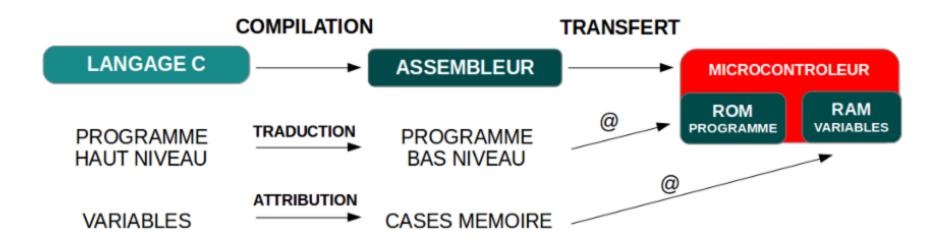
2 ko



- Grande communauté
- Shields (extensions)

Les outils pour programmer

- Programme
- IDE = Interface de Développement
- Téléversement

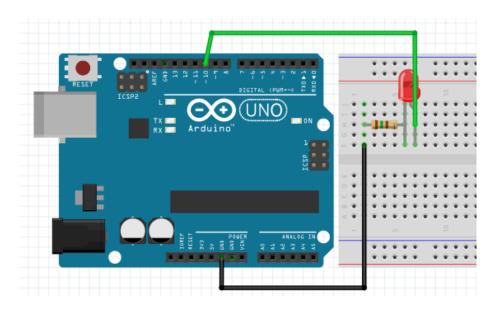

```
PROGRAMINO IDE FOR ARDUINO & GENUINO 1.1.0.1
File Edit Options View Sketch Hardware Web Tools Help
                  Board Description
   C:\Program Files (x86)\PROGRAM
                             17 long cnt = 0;
   P Terminal.ino
                              19 void setup()
                             20 = {
                                       // Set baudrate to 19200 baud
                                      Serial.begin(19200);
                             24
                             25
                             27
                             28
                                      Serial.print(analogRead(A0));
                                      Serial.print(" - ");
Object Explorer
                                      Serial.println(cnt);
                                      delay(200);
  void loop()
                             35
                                       // Save data after 50 measurements into the Logfile
                                         Serial.println("[#SAVE#LogFile.txt]");
                             40
                            Arduino Messages Search Results
                            Verify code please wait.
                            Last verify at: 09:08:37
                            Sketch uses 2,620 bytes (8%) of program storage space. Maximum is 32,256 bytes.
                                    Comport: (COM3) Arduino Mega 2560
```


Les étapes pour programmer

- Programme
- IDE = Interface de Développement
- Téléversement

Mon premier programme

- Prise en main interface
- Connexion USB
- Programme Blink

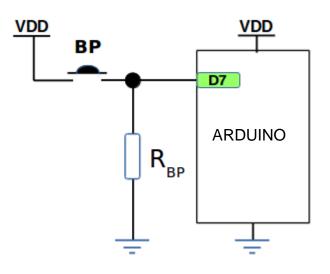


Pilotage d'une sortie externe / LED

Cablage d'une LED sur D10

RLED = VARDUINO - VSEUIL / IMAX

Programme Blink modifié


Blink§

```
void setup() {
  pinMode(10, OUTPUT);
}
void loop() {
  digitalWrite(10, HIGH);
  delay(1000);
  digitalWrite(10, LOW);
  delay(1000);
}
```

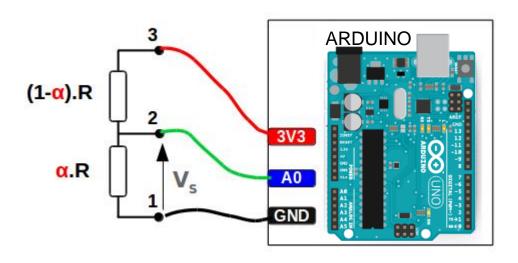

Récupération d'une donnée numérique

• RBP pour protéger l'alimentation


```
Blink §
int val = 0;

void setup() {
  pinMode(13, OUTPUT);
  pinMode(7, OUTPUT);
}

void loop() {
  val = digitalRead(7);
  digitalWrite(13, val);
}
```



Récupération d'une donnée analogique

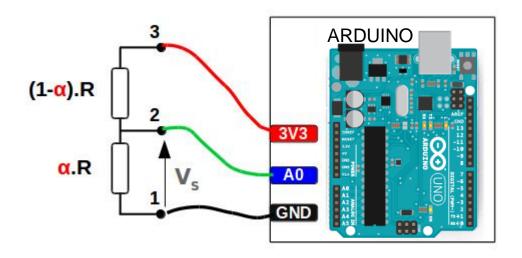
Câblage potentiomètre

AnalogReadSerial §

```
void setup() {

void loop() {
  int sensorValue = analogRead(A0);
  delay(1);
}
```


- Comment vérifier que la donnée est bien convertie ?
- CAN intégré 10 bits


Récupération d'une donnée analogique

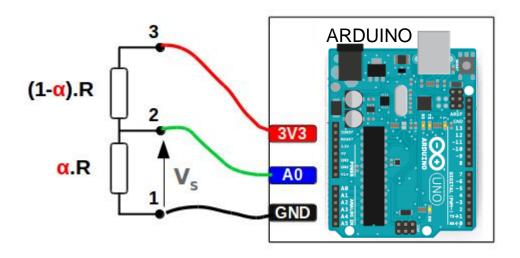
- Câblage potentiomètre
- Affichage console + Traceur / Exemple : Basics/AnalogReadSerial

AnalogReadSerial §

```
void setup() {
   Serial.begin(9600);
}

void loop() {
   int sensorValue = analogRead(A0);
   Serial.println(sensorValue);
   delay(1);
}
```


CAN intégré – 10 bits

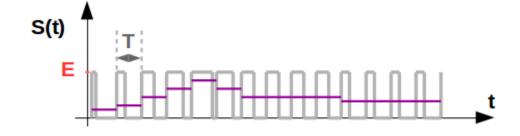

Récupération d'une donnée analogique

- Câblage potentiomètre
- Affichage console + Traceur / Exemple : Basics/AnalogReadSerial

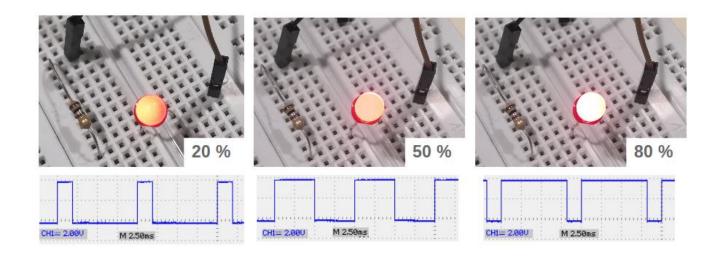
AnalogReadSerial §

```
void setup() {
   Serial.begin(9600);
}

void loop() {
   int sensorValue = analogRead(A0);
   Serial.println(sensorValue);
   delay(1);
}
```

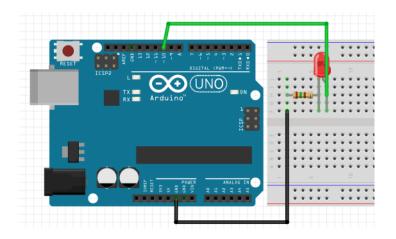


CAN intégré – 10 bits


Contrôler la luminosité d'une LED

- Modulation de largeur d'impulsions
- PWM (Pulse Width Modulation)

- Signal à période fixée
- Variation du temps haut
- RC = rapport cyclique

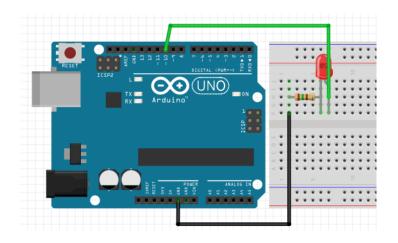

$$s(t) = \int_0^T s(t) dt = rac{t_h}{T} \cdot E = RC \cdot E$$

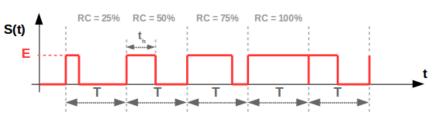
Contrôler la luminosité d'une LED

- Modulation de largeur d'impulsions
- Exemple : Basics/Fade

 Quel est le signal appliqué sur la LED ?

```
Fade §
int led = 9;
                       // the PWM pin the LED is attached to
int brightness = 0;  // how bright the LED is
int fadeAmount = 5;
                      // how many points to fade the LED by
// the setup routine runs once when you press reset:
void setup() {
 // declare pin 9 to be an output:
 pinMode(led, OUTPUT);
// the loop routine runs over and over again forever:
void loop() {
  // set the brightness of pin 9:
  analogWrite(led, brightness);
  // change the brightness for next time through the loop:
  brightness = brightness + fadeAmount;
  // reverse the direction of the fading at the ends of the fade:
  if (brightness <= 0 || brightness >= 255) {
    fadeAmount = -fadeAmount:
  // wait for 30 milliseconds to see the dimming effect
  delay(30);
```

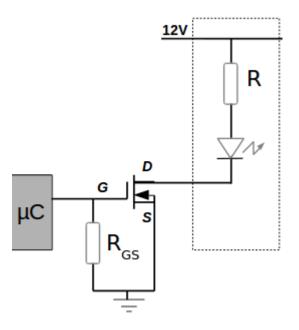



Contrôler la luminosité d'une LED

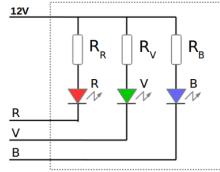
Fade §

int led = 9;

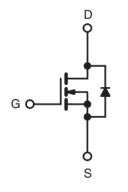
- Modulation de largeur d'impulsions
- Exemple : Basics/Fade

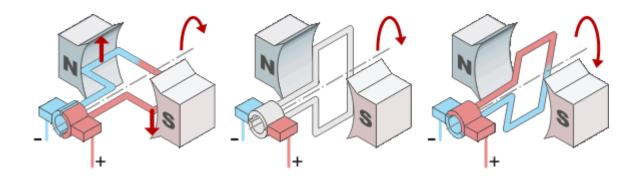



```
int brightness = 0;
                      // how bright the LED is
int fadeAmount = 5:
                      // how many points to fade the LED by
// the setup routine runs once when you press reset:
void setup() {
  // declare pin 9 to be an output:
  pinMode(led, OUTPUT);
// the loop routine runs over and over again forever:
void loop() {
  // set the brightness of pin 9:
  analogWrite(led, brightness);
  // change the brightness for next time through the loop:
  brightness = brightness + fadeAmount;
  // reverse the direction of the fading at the ends of the fade:
  if (brightness <= 0 || brightness >= 255) {
    fadeAmount = -fadeAmount;
  // wait for 30 milliseconds to see the dimming effect
  delay(30);
```


// the PWM pin the LED is attached to

Piloter un composant de puissance


- Transistor IRL540 ou IRF540 ou BS170
 - Courant max ID
 - Tension max VDS
 - Tension min de commande VGS

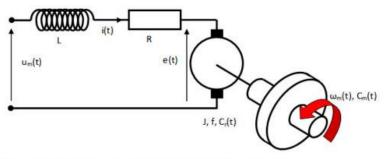


N-Channel MOSFET

 Moteur = élément de conversion d'une puissance électrique vers une puissance mécanique

- Aspect électrique : $P_{em} = E \cdot I$
- lacksquare Aspect mécanique : $P_{em} = T_{em} \cdot \Omega$

où:


- *E* : la force contre-électromotrice [volt]
- I: le courant dans l'induit [ampère]
- lacksquare T_{em} : le couple du moteur [N.m]
- lacksquare Ω : vitesse angulaire de l'induit [rad/s]

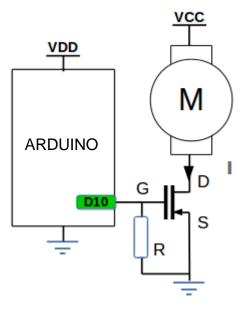
- Couple souvent lié au courant
- Eléments de puissance indispensables
- Transistor / Pont en H / Drivers

https://www.energieplus-lesite.be/index.php?id=11530#c7327+c7323

- Vitesse proportionnelle à fem
- Quasiment proportionnelle à U

Les équations qui modélisent le comportement du moteur sont les suivantes :

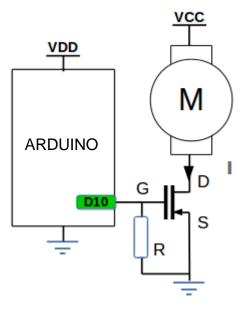
Loi d'Ohm dans le circuit d'induit :	$u_m(t) = \Theta(t) + R \cdot i(t) + L \cdot \frac{di(t)}{dt}$	(1)
·	$e(t) = K_e \cdot \omega(t)$	(2)
Équations de l'électromagnétisme dans le moteur :	$c_m(t) = K_c \cdot i(t)$	(3)
Équation de la dynamique de l'arbre moteur :	$c_m(t) - c_r(t) - f \cdot \omega(t) = J \cdot \frac{d\omega(t)}{dt}$	(4)


- u_m(t) est la tension d'alimentation i(t) est le courant consommé e(t) est la tension contre-électromotrice (V) R est la valeur de la résistance L est la valeur de l'inductance Ke est le coefficient de fcem (V/(rad/s)) (rad/s) ω(t) est la vitesse de rotation de l'arbre moteur f est le paramètre de frottement "fluide" total (N.m/(rad/s)) (kg.m²) J est l'inertie totale ramenée sur l'axe moteur K_C est la constante de couple (N.m/A)
 - c_m(t) est le couple moteur. C'est « l'effort tournant » qu'est capable de fournir le moteur. Plus ce couple est important et plus le moteur aura la capacité à faire tourner une lourde charge.
 - c_r(t) est le couple résistant sur l'axe moteur. C'est un effort qui s'oppose au mouvement de rotation du moteur et qui à tendance à le freiner. Par exemple, des herbes hautes et épaisses vont générer un couple résistant au niveau des lames fixées sur l'axe de sortie du moteur électrique que l'on trouve dans une tondeuse.

- Facile à mettre en œuvre
- Peu de couple
- Asservissement de position nécessitant un encodeur externe
- Usure mécanique (balais)

http://stephane.genouel.free.fr/FT/Dossier Multimedia/Moteurelectrique/co/Moteur electrique 3.html

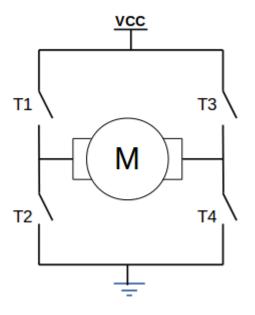
Une seule direction / Transistor

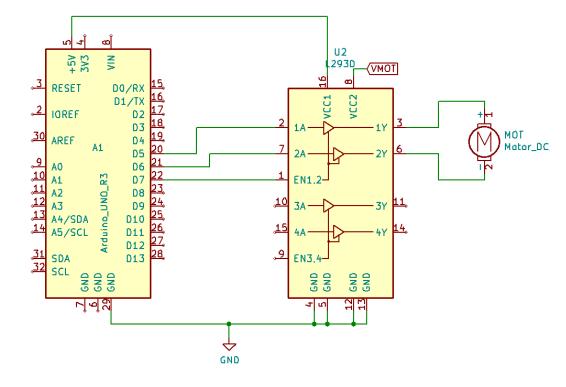



```
Fade §
int led = 9;
                      // the PWM pin the LED is attached to
int brightness = 0;  // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by
// the setup routine runs once when you press reset:
void setup() {
 // declare pin 9 to be an output:
  pinMode(led, OUTPUT);
// the loop routine runs over and over again forever:
void loop() {
 // set the brightness of pin 9:
  analogWrite(led, brightness);
  // change the brightness for next time through the loop:
  brightness = brightness + fadeAmount;
  // reverse the direction of the fading at the ends of the fade:
  if (brightness <= 0 || brightness >= 255) {
    fadeAmount = -fadeAmount:
  // wait for 30 milliseconds to see the dimming effect
  delay(30);
```

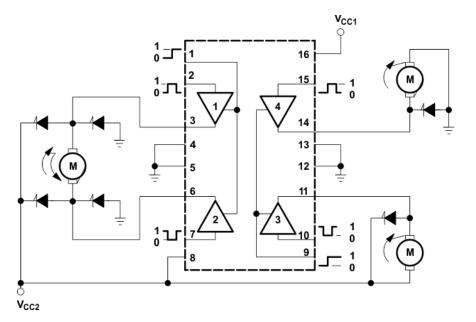
Et pour changer de sens de rotation ?

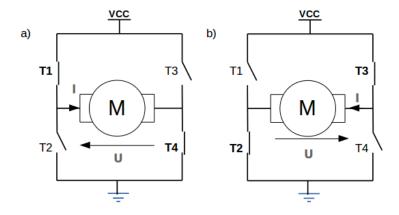
Une seule direction / Transistor




```
Fade §
int led = 9;
                      // the PWM pin the LED is attached to
int brightness = 0;  // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by
// the setup routine runs once when you press reset:
void setup() {
 // declare pin 9 to be an output:
  pinMode(led, OUTPUT);
// the loop routine runs over and over again forever:
void loop() {
 // set the brightness of pin 9:
  analogWrite(led, brightness);
  // change the brightness for next time through the loop:
  brightness = brightness + fadeAmount;
  // reverse the direction of the fading at the ends of the fade:
  if (brightness <= 0 || brightness >= 255) {
    fadeAmount = -fadeAmount:
  // wait for 30 milliseconds to see the dimming effect
  delay(30);
```

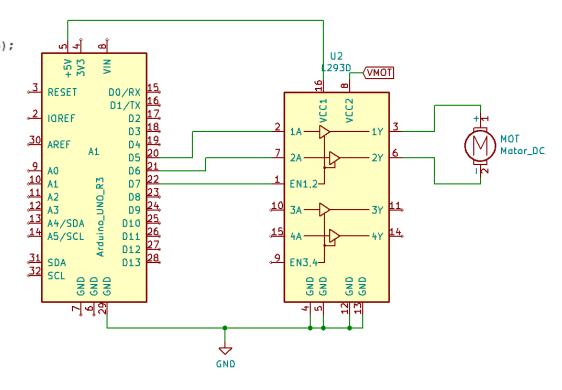
Et pour changer de sens de rotation ?


Deux directions / Pont en H / L293-D



Courant élevé

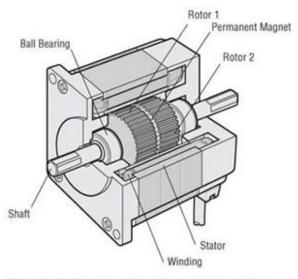
Pont en H – L293D (avec diode roue libre – 0.6A) ou L298 (sans diode roue libre – 1.5A)


- Facile à mettre en œuvre
- Peu de couple
- Asservissement de position nécessitant un encodeur externe
- Usure mécanique (balais)

Deux directions / Pont en H / L293-D

MCC8PWM

```
if(etat_activation == 1) {
  val_pot = analogRead(A0);
  rapport_cyclique = map(val_pot, 0, 1023, -255, 255);
  if(rapport_cyclique < 0) {
     digitalWrite(enableAB, HIGH);
     analogWrite(moteurA, -rapport_cyclique);
     analogWrite(moteurB, 0);
  }
  else {
     digitalWrite(enableAB, HIGH);
     analogWrite(moteurA, 0);
     analogWrite(moteurB, rapport_cyclique);
  }
}
else {
  digitalWrite(enableAB, LOW);
  analogWrite(moteurA, 0);
  analogWrite(moteurA, 0);
  analogWrite(moteurA, 0);
  analogWrite(moteurB, 0);
}</pre>
```

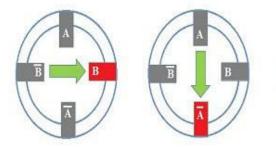


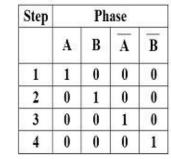
LEnsE

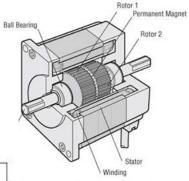
Laboratoire d'Enseignement Expérimental

Avancement pas par pas

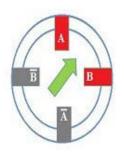

Motor Structural Diagram: Cross-Section Parallel to Shaft

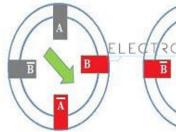


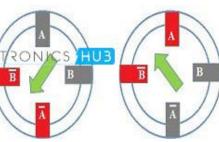

- Asservissement de position « inclus »
- Couple intéressant
- Pilotage à maitriser
- Vitesse réduite



Avancement pas par pas

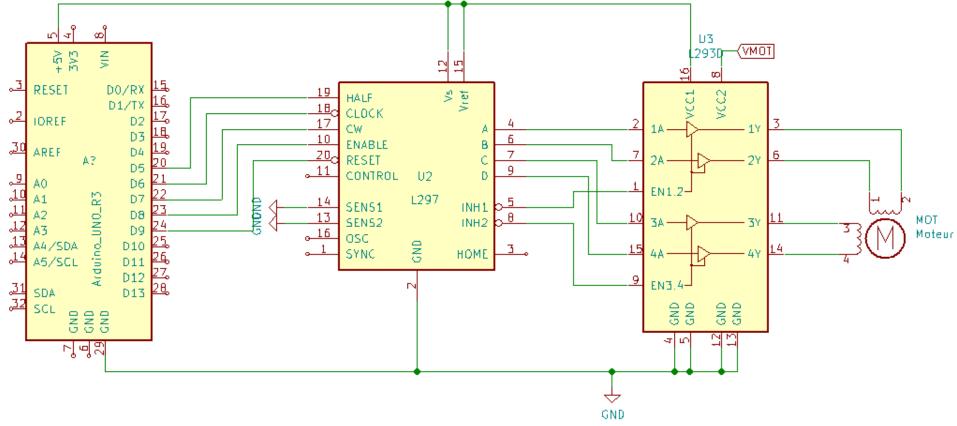




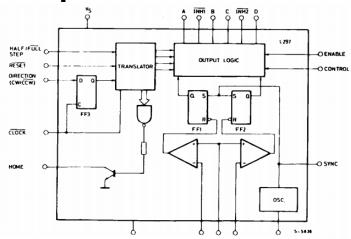


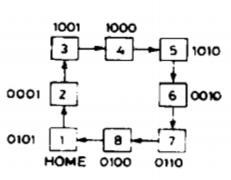
structural Diagram: Cross-Section Parallel to Shaft

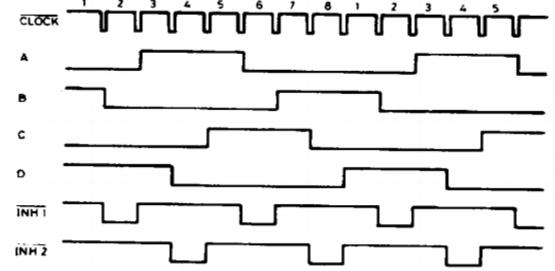
Full Step - Two Phase ON



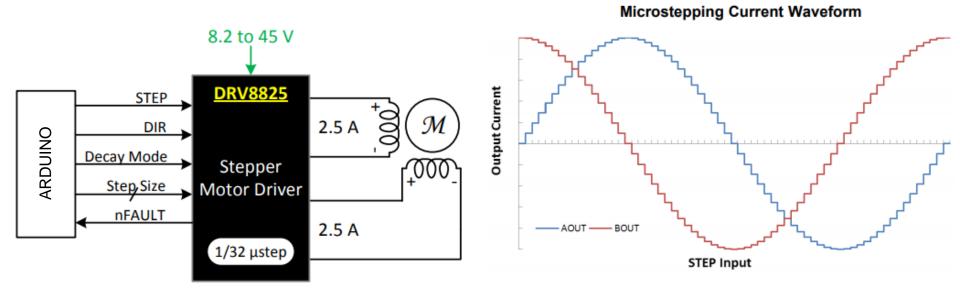
Step	Phase							
	A	В	Ā	B				
1	1	1	0	0				
2	0	1	1	0				
3	0	0	1	1				
4	1	0	0	1				


https://www.orientalmotor.com/stepper-motors/technology/stepper-motor-overview.html


- Pont en H / L293D
- Driver / L297



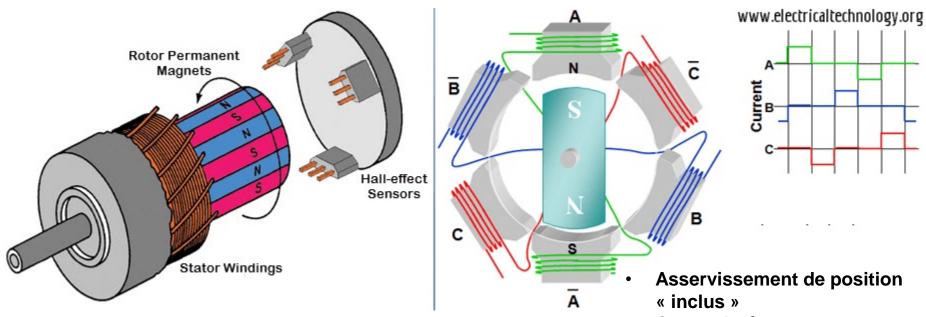
- Pont en H / L293D
- Driver / L297
- Commande en Demi-pas

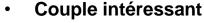


Piloter un moteur pas à pas plus subtilement

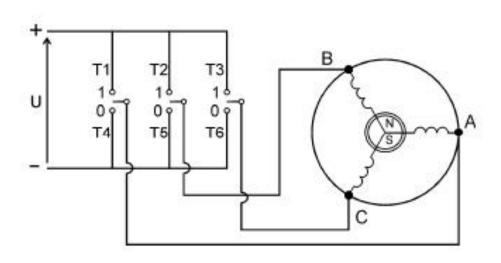
- Utilisation d'un pont en H
- Commande avec DRV8825

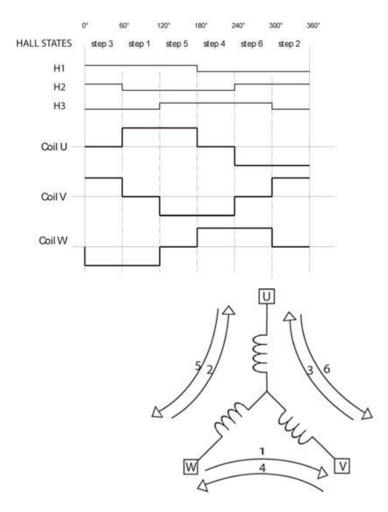
- BLDC: BrushLess Direct Current machine synchrone auto-pilotée à aimants permanents
- Avancement pas par pas
- Sans contact entre rotor et stator



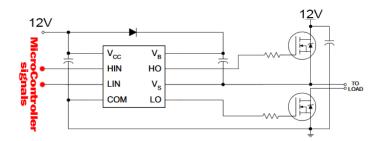

- Asservissement de position « inclus »
- Couple intéressant
- Pilotage à maitriser

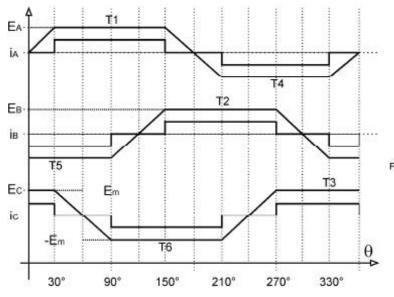
 BLDC: BrushLess Direct Current machine synchrone auto-pilotée à aimants permanents

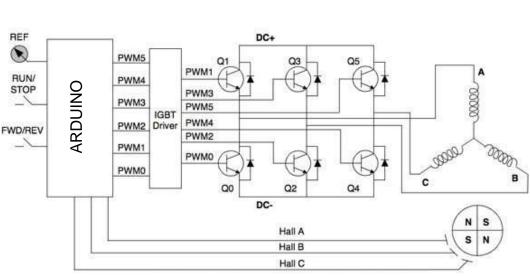

Construction, Working Principle & Operation of BLDC Mc


Pilotage à maitriser

Transistors


http://www.energoelektronika.pl/do/ShowNews?id=1599

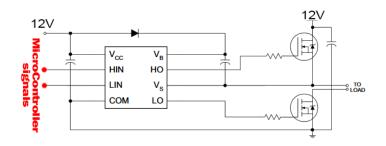


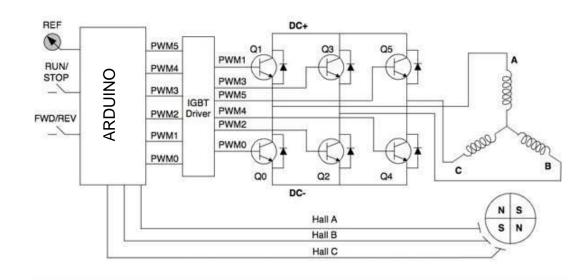


 $\underline{https://www.digikey.com/en/articles/techzone/2013/mar/an-introduction-to-brushless-dc-motor-control}$

Avec drivers de MOS

http://www.energoelektronika.pl/do/ShowNews?id=1599

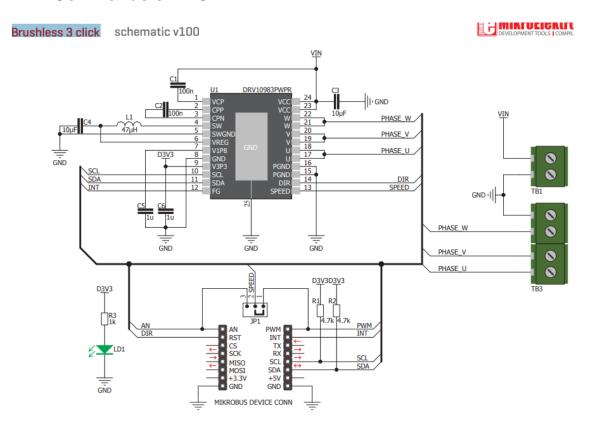



https://www.digikey.com/en/articles/techzone/2013/mar/an-introduction-to-brushless-dc-motor-control

Avec drivers de MOS

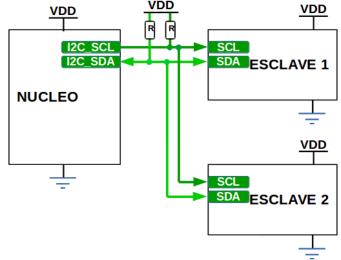
CommandeBLDC

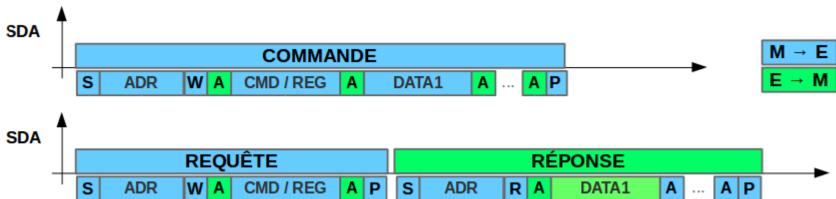
```
case 1:
    digitalWrite (AA1, LOW);
    digitalWrite (AA2, LOW);
    digitalWrite (BB1, LOW);
    digitalWrite(CC2,LOW);
    digitalWrite (BB2, HIGH);
    digitalWrite(CC1, HIGH);
    delta = emA-sum;
    break:
//Phase2 A-B
  case 2:
    digitalWrite (AA2, LOW);
    digitalWrite (BB1, LOW);
    digitalWrite(CC1,LOW);
    digitalWrite (CC2, LOW);
    digitalWrite (AA1, HIGH);
    digitalWrite (BB2, HIGH);
    delta = emC-sum:
```

https://www.digikey.com/en/articles/techzone/2013/mar/an-introduction-to-brushless-dc-motor-control

Piloter un moteur *brushless* plus subtilement


- Utilisation du module Brushless 3 click MikroE
- Commande en I2C



Communiquer en I2C

- Réseau de terrain sur 2 fils
- Relation maitre/esclaves
- Adressage des esclaves

Communiquer en I2C

Exemple du TC1321 / DAC sur carte Microchip I2C

TABLE 4-2: TC1321 COMMAND SET (READ_BYTE AND WRITE_BYTE)

Command Byte Description						
Command	Code	Function				
RWD	00h	Read/Write Data (DATA)				
RWCR	01h	Read/Write Configuration (CONFIG)				

TABLE 4-3: CONFIGURATION REGISTER (CONFIG), 8-BIT, READ/WRITE

Configuration Register (CONFIG)										
Bit Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]		
Bit Function	Reserved (Note 1)									

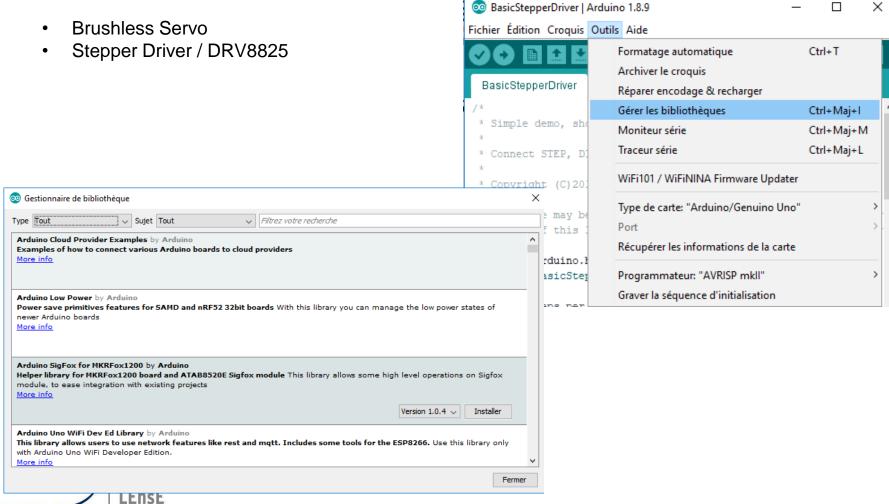
Note 1: Always returns '0' when reading

2: 1 = Standby (Shut down) mode

0 = Normal mode

TABLE 4-4: DATA REGISTER (DATA), 10-BIT, READ/WRITE

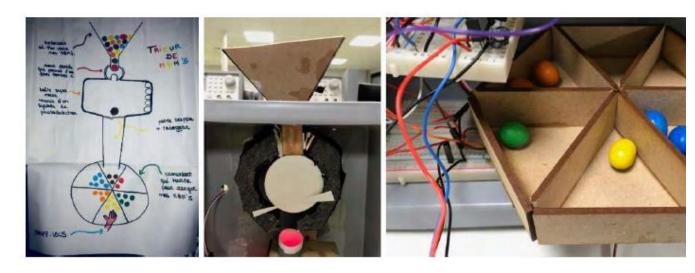
	Data Register (DATA) for 1st Byte					Data Register (DATA) for 2nd Byte									
D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Х	Х	Х	Х	X	Х
MSB	X	X	X	X	X	X	X	X	LSB	X	X	X	X	X	X


Bibliothèque WIRE

Functions

- begin()
- requestFrom()
- beginTransmission()
- endTransmission()
- write()
- available()
- read()
- SetClock()
- onReceive()
- onRequest()

Des tonnes de bibliothèques

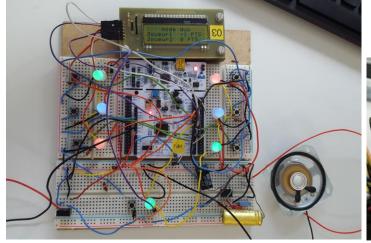

×

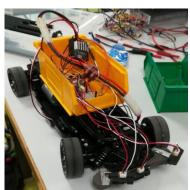
Systèmes embarqués Quelques exemples

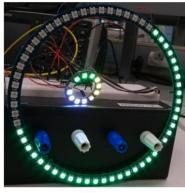
Quelques exemples

http://lense.institutoptique.fr/

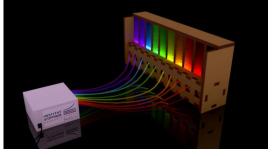
realisations nucleo






Quelques exemples

http://lense.institutoptique.fr/


realisations nucleo

