Sommaire
Définir un système
A1 = 2; % Amplification simple A2num = [1 40]; % numérateur d'une fonction de transfert - ordre 1 (du poids fort (=- s1 - au poids faible - s0) A2den = [1 1 1]; % dénominateur d'une fonction de transfert - ordre 2 A2 = tf(A2num, A2den);
Mettre en cascade (série) deux systèmes
Il est possible de mettre deux systèmes en série par la fonction series.
A = series(A1, A2);
Afficher la réponse indicielle
Pour afficher la réponse indicielle d’un système, il faut utiliser la fonction step.
t = linspace(0,100,1001); [IND_A, Time_A] = step(A, t); figure(1) plot(Time_A, IND_A); grid on;
Afficher la réponse impulsionnelle
t = linspace(0,100,1001); [IMP_A, Time_A] = impulse(A, t); figure(1) plot(Time_A, IMP_A); grid on;
Contre-réaction
On peut définir une nouvelle fonction de transfert \(B(s)\) correspondant à la boucle de retour :
Bnum = [1]; % numérateur - ordre 0 Bden = [1 10]; % dénominateur - ordre 1 B = tf(Bnum, Bden);
Pour pouvoir réaliser un système bouclé ayant une réaction A et une contre-reaction B, il suffit d’utiliser la fonction feedback.
TFboucle = feedback(A, B);
on peut alors afficher les réponses indicielles des deux systèmes :
[TF_boucle, Time_boucle] = step(A,TFboucle);
fonction lsim pour la réponse à un signal particulier
MATLAB / Simulation systèmes bouclés