ETI – Filtrage

Introduction

- domaines d'application
- rappels & notations sur la fonction de filtrage
- Quelle technologie choisir ? passif/actif/capa com/numérique

Principales formes de réponse

- notion de gabarit
- réponse de Butterworth
- réponse de Chebychev
- comparaison & autres formes de réponse

Filtrage actif

- intérêt et limitations
- filtres du 1^{er} ordre
- Structure de Rauch
- Structure de Sallen-Key

Domaines d'application

Traitement de signaux audio, vidéo, radio... Télécommunications, télémétrie... Instrumentation scientifique, médicale, radars... Acquisition numérique de données (anti-repliement) Réjection de bruit (alimentation électrique...)

. . .

Miniature Filters Active/Bandpass/Band-Reject

http://www.avens-filter.com/

Rôle du filtre

- Transmettre l'information <u>sans la déformer</u> dans la bande passante
- Couper totalement l'information en dehors
- Isoler dans un signal complexe la ou les bandes de fréquences utiles
- Éliminer les fréquences indésirables

Conséquences pour la fonction de transfert du filtre <u>T</u>(j ω)

Dans la bande passante

Hors de la bande passante

Module de $\underline{T}(j\omega)$ constant Phase de $\underline{T}(j\omega)$ linéaire Module de $\underline{T}(j\omega) \approx 0$

En pratique, la synthèse d'un filtre se fait à partir d'une forme polynomiale choisie pour répondre au mieux aux contraintes demandées

Exemples : Réponse plate dans la bande passante -> Butterworth Bande de transition étroite -> Chebychev Phase linéaire dans la bande-passante -> Bessel

Notations

Tous les filtres sont équivalents à un passe-bas par changement de variable

Quelle technologie choisir ?

Technologie	Composants	Spécificités	Exemples d'application
Filtres numériques (voir cours STNS en 2A)	Circuits logiques intégrés (FPGA, microcontroleur,)	Signaux numérisés (pré et post filtrage nécessaire !) F < 100MHz (re)programmable Production en grande série possible	
Filtres passifs	Composants discret L et C, Quartz pour les HF	F élevée (< 500MHz) Pas d'alimentation Non intégrable	Anti-repliement Rejection du bruit d'alimentation
Filtres actifs	AO, R et C	F < 1 MHz Tension de sortie limitée	Anti-repliement Audio « High Fidelity »
Filtres à capacité commutée	AO, interrupteurs commandés MOS, R et C intégrés	F < qq MHz Intégrable Fréquence programmable et précise	Détection de « tonalité » Analyseur de spectre

Réponse de Butterworth

$$T(x) = \frac{1}{\sqrt{1 + x^{2n}}}$$

avec x = ω / ω_C et ω_C = pulsation de coupure à -3dB

Afin de synthétiser le filtre, il est nécessaire déterminer une fraction rationnelle $\underline{T}(\underline{s})$ qui admette T(x) pour module.

Pour cela on factorise le polynôme $P(x) = 1 + x^{2n}$

(cas n impair)

$$P(x) = (x+j) (x-j) (x+a+jb) (x+a-jb) (x-a-jb) (x-a+jb) (... = (1+x^2) [(x+a)^2+b^2] [(x-a)^2+b^2] [...$$

P(x) apparaît ainsi comme le carré du module du polynôme $\underline{P}(\underline{s})$ suivant ($\underline{s}=jx$) :

$$\underline{\mathbf{P}}(\underline{\mathbf{s}}) = (1+jx) [b+j(x+a)] [b+j(x-a)] [...= (1+\underline{\mathbf{s}}) (b+\underline{\mathbf{s}}+ja) (b+\underline{\mathbf{s}}-ja) (...= (1+\underline{\mathbf{s}}) [(b+\underline{\mathbf{s}})^2+a^2] [...= (1+\underline{\mathbf{s}}) (a^2+b^2+2b\underline{\mathbf{s}}+\underline{\mathbf{s}}^2) (...$$

Réponse de Butterworth

La transmission normalisé du filtre s'écrit donc

$$T(\underline{s}) = \frac{1}{P(\underline{s})}$$

Remarques

- La fréquence de coupure à -3dB vaut ω_{c} quelque soit l'ordre du filtre
- Le polynome P(s) ne dépend que de l'ordre du filtre n

n	P(s)
1	(1+s)
2	$\left(1+1.414s+s^2\right)$
3	$(1+s)(1+1.000s+s^2)$
4	$(1+1.848s+s^2)(1+0.765s+s^2)$
5	$(1+s)(1+1.618s+s^2)(1+0.618s+s^2)$
6	$(1+1.932s+s^2)(1+1.414s+s^2)(1+0.518s+s^2)$
7	$(1+s)(1+1.802s+s^2)(1+1.247s+s^2)(1+0.445s+s^2)$

Réponse de Chebychev

$$T(x) = \frac{1}{\sqrt{1 + \varepsilon^2 C_n^2(x)}}$$
 avec ε un nombre et $C_n(x)$ un polynôme défini par $C_0(x) = 1$; $C_1(x) = x$;
 $C_{n+1}(x) = 2 \times C_n(x) - C_{n-1}(x)$

<u>Remarque</u> : pour ce type de réponse la fréquence de normalisation est définie à $-10 \log (1+\epsilon^2)$ qui vaut -3dB uniquement pour $\epsilon=1$.

n	$P(s)$ pour $r = 0.5 dB = 1.059$ ou $\varepsilon = 0.3493$
1	(1+0.349s)
2	$(1+0.940s+0.659s^2)$
3	$(1+1.596s)(1+0.548s+0.875s^2)$
4	$(1+2.376s+2.806s^2)(1+0.330s+0.940s^2)$
5	$(1+2.760s)(1+1.230s+2.097s^2)(1+0.216s+0.965s^2)$
6	$(1+3.692s+6.370s^2)(1+0.719s+1.695s^2)(1+0.152s+0.977s^2)$
7	$(1+3.904s)(1+1.818s+3.939s^2)(1+0.472s+1.477s^2)(1+0.112s0.984+s^2)$
8	$\left(1+4.981s+11.36s^{2}\right)\left(1+1.037s+2.788s^{2}\right)\left(1+0.335s+1.349s^{2}\right)\left(1+0.086s+0.988s^{2}\right)$

Tchebychev vs Butterworth

- Tchebychev =
- Coupure plus rapide
- Ondulations dans la BP
- Phase non linéaire

Autres formes de réponse

- Filtres de Bessel
 - Phase très linéaire
 - coupure moins rapide que Butterworth
- Filtres de Legendre
 - Pas d'ondulation dans la BP
 - Coupure plus rapide que Butterworth (mais moins que Tchebychev)
- Filtres de Cauer
 - Ondulations en BP et en bande d'arrêt
 - Coupure très rapide
 - Phase non linéaire
- •

Transformations

NB : pour le coupe-bande, on utilise : $\underline{S} = \Delta x / (\underline{s} + 1/\underline{s})$

Démarche de synthèse d'un filtre actif

Filtres actifs : cellules élémentaires

	1 ^{er} ordre	2 ^{ème} ordre	
Passe-bas	$\underline{\mathrm{T}}(\mathrm{j}\omega) = \frac{\mathrm{A}}{1+\mathrm{j}\frac{\omega}{\omega_0}}$	$\underline{\mathrm{T}}(\mathrm{j}\omega) = \frac{\mathrm{A}}{1+2\mathrm{m}\mathrm{j}\frac{\omega}{\omega_0} + \left(\mathrm{j}\frac{\omega}{\omega_0}\right)^2}$	
Passe-Haut	$\underline{\mathrm{T}}(\mathrm{j}\omega) = \frac{\mathrm{A} \times \mathrm{j}\frac{\omega}{\omega_0}}{1 + \mathrm{j}\frac{\omega}{\omega_0}}$	$\underline{\mathbf{T}}(\mathbf{j}\omega) = \frac{\mathbf{A} \times \left(\mathbf{j}\frac{\omega}{\omega_0}\right)^2}{1 + 2\mathbf{m}\mathbf{j}\frac{\omega}{\omega_0} + \left(\mathbf{j}\frac{\omega}{\omega_0}\right)^2}$	
Passe-bande		$\underline{\mathrm{T}(\mathrm{j}\omega)} = \frac{\mathrm{A} \times 2\mathrm{m}\mathrm{j}\frac{\omega}{\omega_0}}{1 + 2\mathrm{m}\mathrm{j}\frac{\omega}{\omega_0} + \left(\mathrm{j}\frac{\omega}{\omega_0}\right)^2}$	

Filtres de Sallen-Key

Cellule de Sallen-Key d'ordre 2

$$\frac{Vs}{Ve} = \frac{K Y_1 Y_3}{(Y_1 + Y_2)(Y_3 + Y_4) + Y_3(Y_4 - K Y_2)}$$

avec K = $1 + r_2 / r_1$

On choisit les admittances Y_i (capacités ou résistances) suivant le type de filtre à réaliser

	Passe-bas	Passe-haut	Passe-bande
Résistances	Y ₁ et Y ₃	Y ₂ et Y ₄	Y ₁ , Y ₂
Capacités	Y ₂ et Y ₄	Y ₁ et Y ₃	Y ₃
			Y ₄ = R // C

Filtres de Rauch

Cellule de Rauch d'ordre 2

$$\frac{Vs}{Ve} = \frac{-Y_1Y_3}{Y_5(Y_1 + Y_2 + Y_3 + Y_4) + Y_3Y_4}$$

Voir TD10 pour le calcul

On choisit les admittances Y_i (capacités ou résistances) suivant le type de filtre à réaliser

	Passe-bas	Passe-haut	Passe-bande
Résistances	Y ₁ , Y ₃ et Y ₄	Y ₂ et Y ₅	Y ₁ , Y ₂ et Y ₅
Capacités	Y ₂ et Y ₅	Y ₁ , Y ₃ et Y ₄	Y ₃ et Y ₄

Autres types de filtres

Filtres actifs à convertisseur d'impédance (Q >20)

Exemple : filtre à girateur d'Antoniou

Les impédances Z_i sont des C ou des R

Filtres actifs à variables d'états

⁽d) Universal State-Variable 2nd-Order Active Filter

From TI Application Note 779 A Basic Introduction to Filters - Active, Passive, and Switched Capacitor

Filtres « Capa Com » à variables d'états

