
Microscope

On réalise un microscope avec un objectif de grandissement ×3, de focale 40 mm, de diamètre 6 mm, et avec un oculaire de grossissement commercial ×20, de diamètre 8 mm. Les deux lentilles sont considérées minces et convergentes. Le diaphragme d'ouverture (pupille du système) est un diaphragme de diamètre 4 mm placé au foyer image de l'objectif.

- 1. Faire un schéma de principe et écrire les conjugaisons.
- 2. Déterminer la distance entre le centre de l'objectif et son plan objet, et la distance entre le centre de l'objectif et son plan image.
- 3. Déterminer la focale de l'oculaire à l'aide du grossissement commercial $G_{c-oculaire}$. Le grossissement commercial est défini comme le rapport entre l'angle θ ' sous lequel est vu l'image à travers l'instrument de l'objet (de taille y) et l'angle θ_{250} sous lequel serait vu l'objet s'il était placé à 250 mm de l'œil sans instrument. $G_{c-oculaire} = \frac{\theta'}{\theta_{250}}$.
- **4.** Sur l'annexe (échelle transversale ×20 et longitudinale ×1), tracer deux rayons provenant d'un objet ponctuel placé au foyer du microscope sur l'axe et traversant l'instrument dans sa totalité en s'appuyant sur les deux bords du diaphragme d'ouverture.
- 5. Où se trouve la pupille d'entrée du microscope et sous quel angle est-elle vue ?
- 6. Déterminer la position et la taille ϕ_{PS} de la pupille de sortie et la positionner sur le schéma.
- 7. Sur l'annexe, tracer deux rayons qui s'appuient sur les deux bords de la pupille d'entrée, pour un point objet provenant d'un bord du champ de pleine lumière et qui traversent l'ensemble du microscope.
- 8. Faites le tracé en bord de champ total et comparer votre résultat à l'expression approchée $\phi_{CT} \approx \phi_{oculaire}/g_y$ (expression que vous pourrez retrouver analytiquement).

CORRECTION

1.
$$A \xrightarrow{objectif} A' = F_{oculaire} \xrightarrow{oculaire} \infty$$

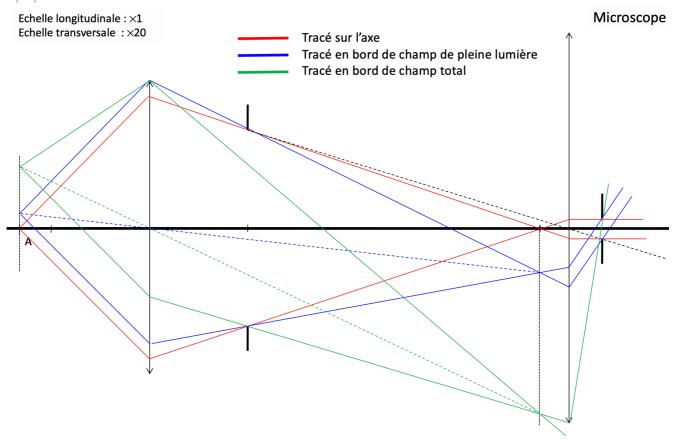
2.
$$g_{y-obj} = -3 = -\frac{\overline{F'A'}}{f'_{objectif}} = \frac{f'_{objectif}}{\overline{FA}} \longrightarrow \begin{cases} \overline{OA'} = 160mm \\ \overline{OA} = -53,3mm \end{cases}$$

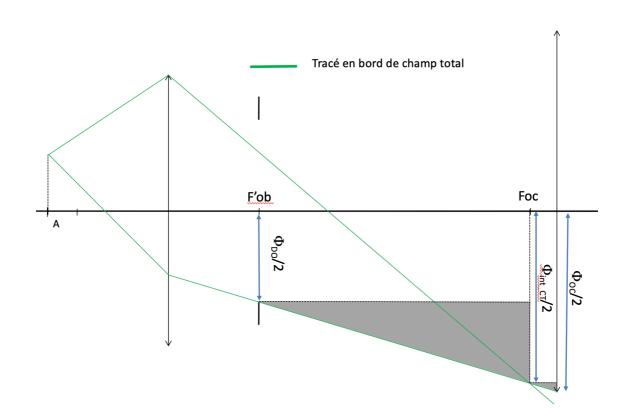
3. L'oculaire a un grossissement commercial ×20.

$$G_{c-oculaire} = 20 = \frac{\theta'}{\theta_{250}} = \frac{y/f'_{oculaire}}{\frac{y}{0.25}} = \frac{1}{4f'_{oculaire}} \rightarrow f'_{oculaire} = 12,5 \ mm$$

Le grossissement commercial est une grandeur définie pour les instruments type loupe et oculaire.

- 4. Schéma sur l'axe
- 5. La pupille d'entrée est à l'infini car le DO est au foyer image de l'objectif. Elle est donc vue sous l'angle $\theta_{PE} = \frac{\Phi_{DO}}{f'_{objectif}} = 0,1$.
- **6.** La pupille de sortie est l'image de la pupille d'entrée par tout le microscope. Donc c'est l'image du DO (placé en F'obj) par l'oculaire. En utilisant la formule de Newton, on obtient,


$$\overline{F_{oc}F'_{obj}} \times \overline{F'_{oc}Ps} = -f'^2_{oculaire}$$
 ce qui donne $\overline{F'_{oc}Ps} = +1.3mm$.


La taille de Ps utilise (par exemple) la formule du grandissement au centre, soit,

$$\phi_{PS} = \phi_{DO} \times \frac{\overline{O_{oc}Ps}}{\overline{O_{oc}DO}} = 4 \times \frac{12,5 + 1,3}{160 - 40 + 12,5} = 0,42 \text{ mm}$$

- 7. Schéma bord de CPL
- 8. D'après le 2ème schéma de la page suivante, en utilisant les triangles semblables, on obtient,

$$\frac{\phi_{oc} - \phi_{CT}^{int}}{f'_{oc}} = \frac{\phi_{CT}^{int} - \phi_{DO}}{F'_{ob}F_{oc}} \longrightarrow \phi_{CT}^{int} = \frac{\phi_{oc} + \phi_{DO} \times \frac{f'_{oc}}{F'_{ob}F_{oc}}}{1 + \frac{f'_{oc}}{F'_{ob}F_{oc}}} \sim \phi_{oc} \longrightarrow \phi_{CT}^{objet} \sim \frac{\phi_{oc}}{g_y^{oc}}$$

