


## SC 19 - Machine Vision


**Image Processing** 

Julien VILLEMEJANE



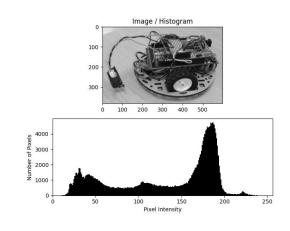






At the end of this training, the learners will be able to:

#### Use basic building blocks of OpenCV

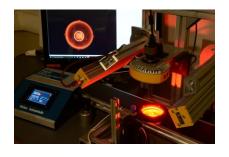

Open an image Create the histogram of an image

Apply basic transforms on images

- blur, filters
- erosion, dilation, opening, closing

Display the contour of objects

## SC19 – Image Processing














What is image processing for ?

Why is image processing required in a machine vision chain?

For industrial inspection applications?

What are the **main processes**?
What is the goal of each of them?
What is the ideal **workflow**?





https://www.youtube.com/@firstprinciplesofcomputerv3258



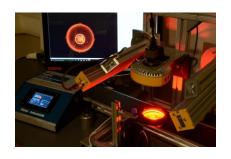


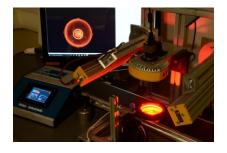









Image from the camera


- Noise
- Bad contrast
- Inhomogeneous Lighting

- ...

Desired image with objects with well-defined contours

- Homogeneous zones
- Transition zones





# SC19 – Image Processing Steps for processing an image

**Acquisition** 

**Pre Processing** 

Segmentation

**Feature Extraction** 

Classification

**Decision** 

Light, Camera...

Noise Reduction / Filtering
Contrast Enhancement
Normalization

Thresholding
Edge Detection
Region of Interest Selection

Geometric Features
Texture Analysis
Color Analysis

Object detection
Template Matching
Classification

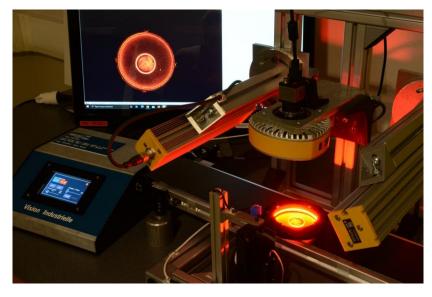
Tolerances, pass/fail, real-time feedback...

Ensuring clarity and reducing unwanted information Making features of interest stand out Standardizing the image scale or intensity

Isolating objects of ROI / Separating product from background Identifying boundaries and contours
Focusing only on relevant portions of the image

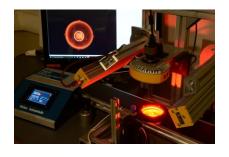
Extracting measurements (size, shape, position...) Recognizing patterns, symbols, points of interest

Identifying and labelling objects
Checking correct shape, size or orientation
Categorizing objects to specific groups (defective or non-def.)






## SC 19 – Machine Vision


Image Processing with OpenCV

Julien VILLEMEJANE









# SC19 – Image Processing What is OpenCV?

#### **Open Source Computer Vision Library**

An open source **computer vision** and machine learning software **library** 

supporting multiple programming languages such as Python, C++, Java, and MATLAB

Image Processing

Filtering, Edge detection, Image transformations...

**Object Recognition** 

Detecting objects in images and videos

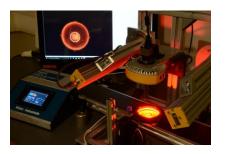
**CV Algorithms** 

Motion tracking, 3D reconstruction, Augmented reality

**Machine Learning** 

Image classification, Pattern recognition, Scene Understanding




https://opencv.org











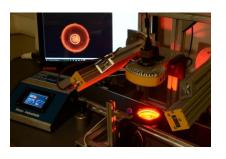
# SC19 – Image Processing Installation of OpenCV

Installing OpenCV for Python 3

pip install opencv-python

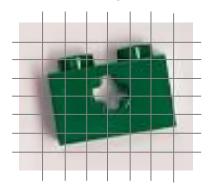
Testing OpenCV importation in a script

import cv2
Cv2.\_\_version\_\_

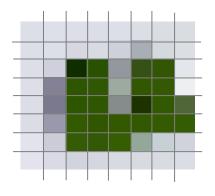

LEnsE. TECH

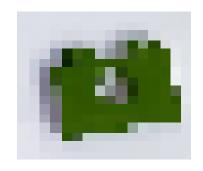
https://iogs-lense-training.github.io/image-processing/

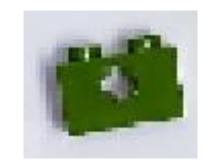



https://opencv.org







#### **Digital Images**


#### Continuous image

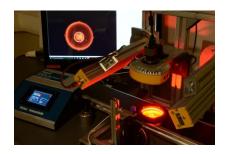


#### Digital image: projection of the continuous image



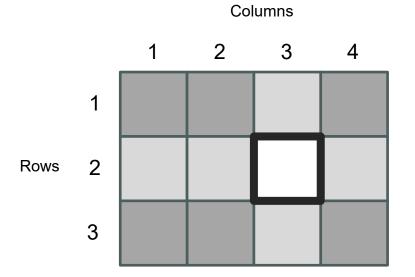





#### Digital Image

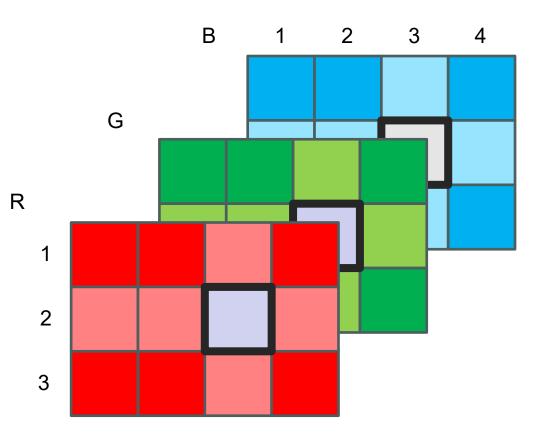
Picture represented in numerical form

so that it can be **stored**, **processed**, and **displayed** by a computer or digital device.


8 x 8 grid 16 x 16 grid 32 x 32 grid

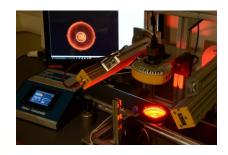





#### Nb of pixels = $h \times v$

GrayScale



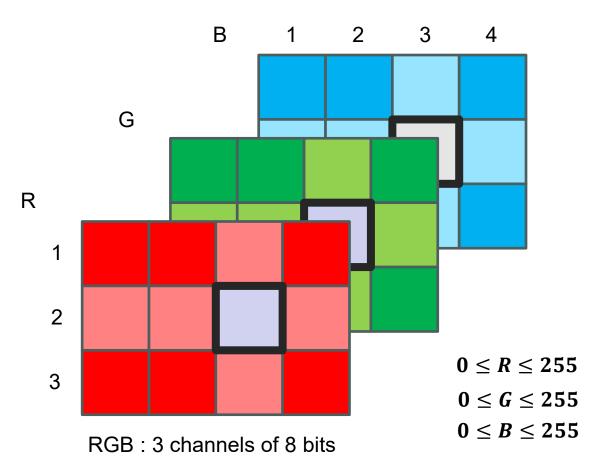

## SC19 – Image Processing

#### **Digital Images**





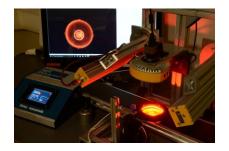
GrayScale




#### Nb of pixels = $h \times v$

Each pixel is converted into **n bits**.

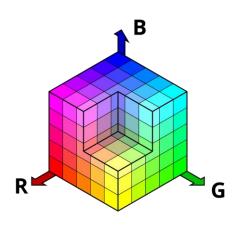
## SC19 – Image Processing


#### **Digital Images / RGB**





R=200, G=100, G=50

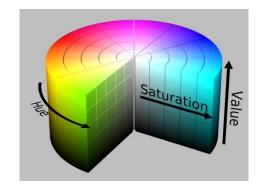





#### **Digital Images / Color spaces**

#### **RGB**

Used primarily in **electronic displays** like computer screens, cameras, and scanners. The combination of these three primary colors at various intensities can produce any color.




#### **HSV**

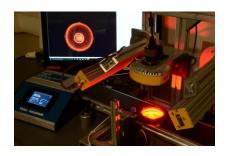
Used in **image editing**. It separates image's color from its brightness.

**Hue**: type of color


**Saturation**: intensity of the color **Value**: Brightness of the color



#### Color Space


Model for **representing colors** in a consistent and reproducible way

Each color space uses a different method for organizing and describing color, depending on the purpose or application



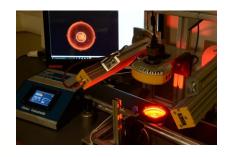
Images Source : Wikipedia





#### **Digital Images / Color spaces**

#### Table 9 from

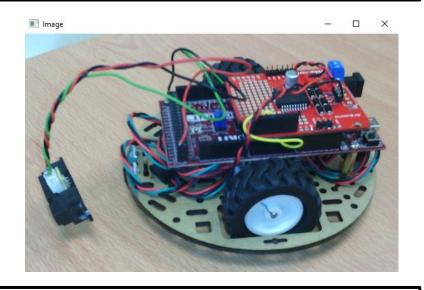

**Segmentation of Images by Color Features: A Survey** - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Advantages-and-disadvantages-of-color-spaces tbl7 323632019 [accessed 10 Oct 2024]

#### Color Space

Model for **representing colors** in a consistent and reproducible way

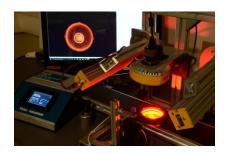
| Advantages                              | Disadvantages                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Convenient for image acquisition and    | Non-uniform illumination sensitive;                                                                                                                                                                                                                                                                                |
| displaying;                             | Differences between colors is not linear                                                                                                                                                                                                                                                                           |
| Based on human color perception;        | Non removable singularities                                                                                                                                                                                                                                                                                        |
| Robust before non-uniform illumination; |                                                                                                                                                                                                                                                                                                                    |
| The chromaticity is decoupled from      |                                                                                                                                                                                                                                                                                                                    |
| the intensity                           |                                                                                                                                                                                                                                                                                                                    |
| Efficient in measuring small color      | Singularity problem as other                                                                                                                                                                                                                                                                                       |
| difference;                             |                                                                                                                                                                                                                                                                                                                    |
| The chromaticity is decoupled from      | nonlinear transformations                                                                                                                                                                                                                                                                                          |
| the intensity;                          |                                                                                                                                                                                                                                                                                                                    |
| Efficient coding color information for  | Due to the linear transformation,                                                                                                                                                                                                                                                                                  |
| TV signal.                              | correlation between the component                                                                                                                                                                                                                                                                                  |
|                                         | channels exists, although not as                                                                                                                                                                                                                                                                                   |
|                                         | high as the RGB space                                                                                                                                                                                                                                                                                              |
|                                         | Convenient for image acquisition and displaying; Based on human color perception; Robust before non-uniform illumination; The chromaticity is decoupled from the intensity Efficient in measuring small color difference; The chromaticity is decoupled from the intensity; Efficient coding color information for |






#### OpenCV / Open and display an image

#### **Acquisition**


#### import cv2

image\_rgb = cv2.imread('path/to/image.png')
image gray = cv2.imread('path/to/image.png', cv2.IMREAD\_GRAYSCALE)

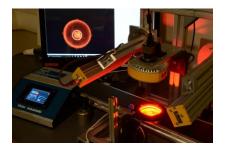


cv2.*imshow*('*Image* ', image\_rgb) cv2.*waitKey*(0)





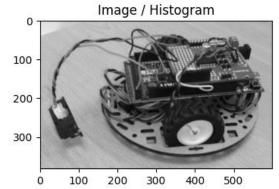
# SC19 – Image Processing Pre-processing

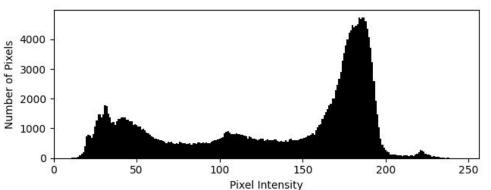

Acquisition

Pre Processing

Noise Reduction / Filtering Contrast Enhancement Normalization

Ensuring clarity and reducing unwanted information Making features of interest stand out Standardizing the image scale or intensity



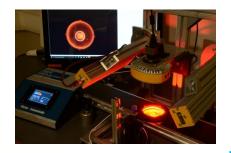




#### OpenCV / Histogram of an image

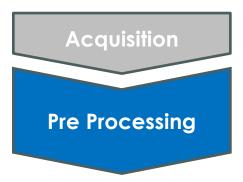
Acquisition

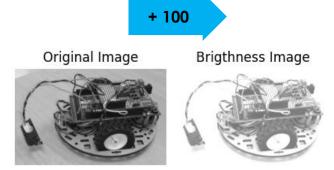
**Pre Processing** 

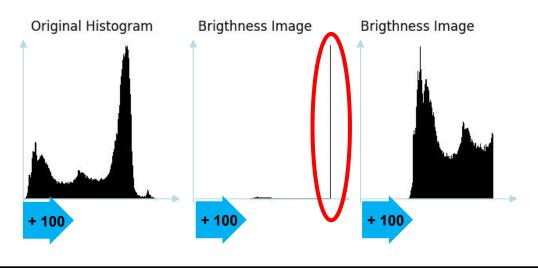





#### Histogram

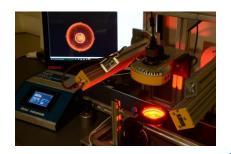

Graphical representation that shows the distribution of pixel intensity values in an image


cv2.calcHist([image], [chan], Mask, [bins\_nb], [min, max])

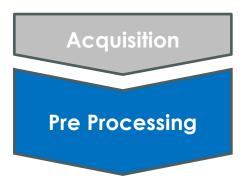


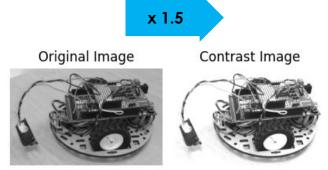


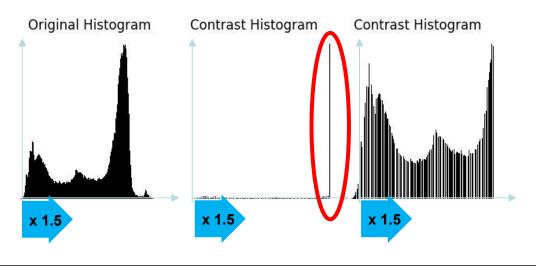

#### **OpenCV / Contrast and Brightness**







new\_img = cv2.convertScaleAbs(image, beta=100)

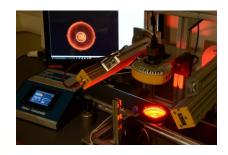





#### **OpenCV / Contrast and Brightness**








new\_img = cv2.convertScaleAbs(image, alpha=1.5)



## Continuing Education

Formation Continue





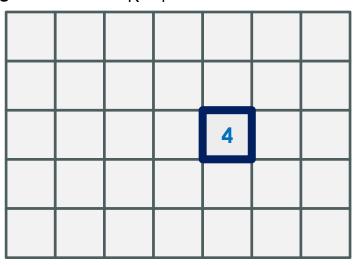
Convolution (filter)

kernel

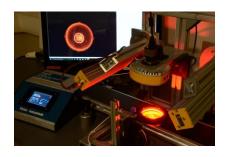
| -1 | 0 | -2 |
|----|---|----|
| 1  | 5 | 1  |
| -2 | 0 | -1 |

#### original image

| 5 | 8 | 4 | 2 | 3 | 1 | 5 |
|---|---|---|---|---|---|---|
| 9 | 5 | 1 | 8 | 7 | 6 | 2 |
| 5 | 7 | 1 | 5 | 6 | 8 | 7 |
| 5 | 8 | 2 | 8 | 4 | 3 | 3 |
| 5 | 6 | 6 | 7 | 2 | 5 | 1 |


## SC19 – Image Processing

#### **OpenCV / Convolution**


| 5 | 8 | 4 | 2                    | 3        | 1                    | 5 |
|---|---|---|----------------------|----------|----------------------|---|
| 9 | 5 | 1 | <b>8</b> x <b>-1</b> | 7<br>× 0 | <b>6</b> x <b>-2</b> | 2 |
| 5 | 7 | 1 | 5<br>× 1             | 6<br>x 5 | <b>8</b> x <b>1</b>  | 7 |
| 5 | 8 | 2 | 8<br>× -2            | 4<br>x 0 | 3<br>x -1            | 3 |
| 5 | 6 | 6 | 7                    | 2        | 5                    | 1 |

filtered image

$$R = -8 + 0 - 12 + 5 + 30 + 8 - 16 + 0 - 3$$
  
 $R = 4$ 







#### **OpenCV / Convolution Kernel**

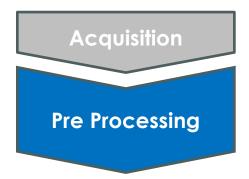
Acquisition

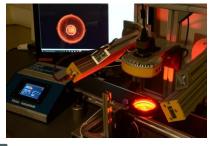
**Pre Processing** 

kernel = cv2.*getStructuringElement*(cv2.MORPH\_xx, (M,N))

#### Cross Kernel

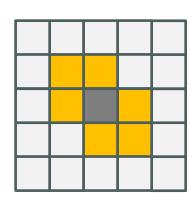
| 0 | 0 | 1 | 0 | 0 |
|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |


cv2.**MORPH\_CROSS** 


#### Rect Kernel

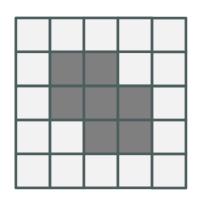
| 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |

cv2.**MORPH\_RECT** 

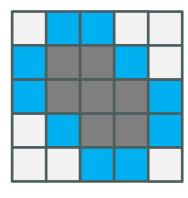








Original pixels

Removed pixels




## SC19 - Image Processing

#### **OpenCV / Erosion and Dilation**

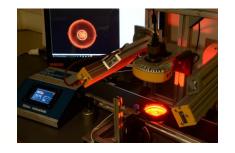


Added pixels

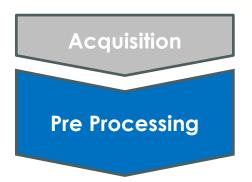


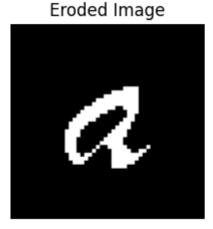
#### kernel

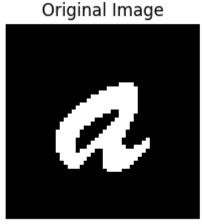
| 0 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 0 | 1 | 0 |

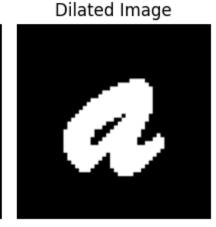

#### Erosion

Shrinking the foreground by removing pixels to the boundaries of objects


#### Dilation


**Enlarging the foreground** by **adding pixels** to the boundaries of objects




#### **OpenCV / Erosion and Dilation**





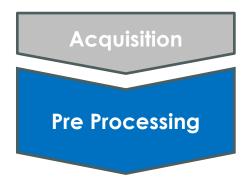


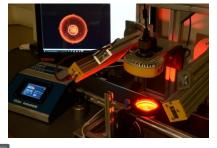


#### kernel

| 0 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 0 | 1 | 0 |

#### Erosion


Shrinking the foreground by removing pixels to the boundaries of objects


#### Dilation

**Enlarging the foreground** by **adding pixels** to the boundaries of objects

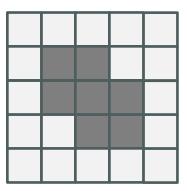
eroded\_image = cv2.**erode**(image, kernel, iterations=1) dilated\_image = cv2.**dilate**(image, kernel, iterations=1)

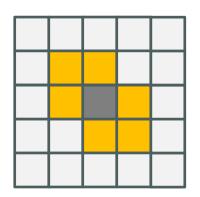


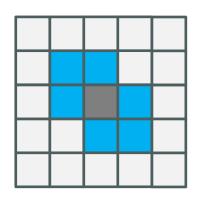




Original pixels


Removed pixels


## SC19 – Image Processing


OpenCV / Opening and Closing morphological transforms



Added pixels





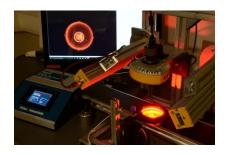


kernel

| 0 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 0 | 1 | 0 |

Opening

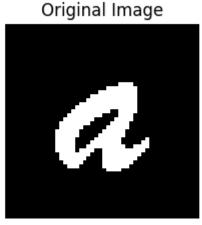
**Erosion** then **Dilation** 

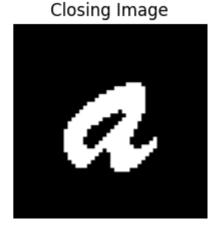

Removing small objects

Closing

**Dilation** then **Erosion** 

Filling in small holes




OpenCV / Opening and Closing morphological transforms









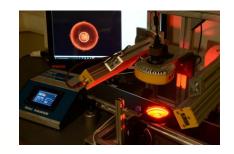
#### kernel

| 0 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 0 | 1 | 0 |

#### Opening

**Erosion** then **Dilation** 

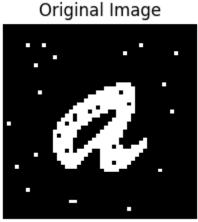
Removing small objects

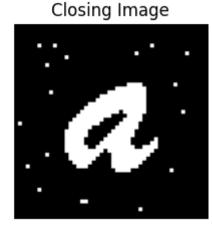

#### Closing

**Dilation** then **Erosion** 

Filling in small holes

opening\_image = cv2.morphologyEx(image, cv2.MORPH\_OPEN, kernel) closing\_image = cv2.morphologyEx(image, cv2.MORPH\_CLOSE, kernel)




OpenCV / Opening and Closing morphological transforms









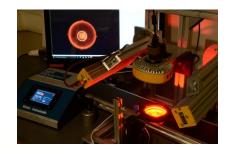
kernel

| 0 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 0 | 1 | 0 |

#### Opening

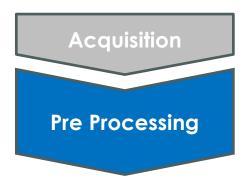
**Erosion** then **Dilation** 

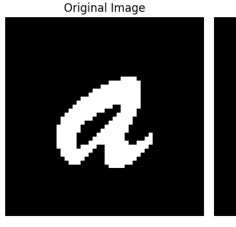
Removing small objects, in the background

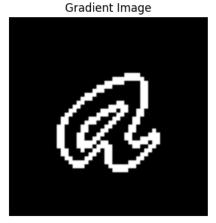

#### Closing

**Dilation** then **Erosion** 

Filling in small holes in the foreground


opening\_image = cv2.morphologyEx(image, cv2.MORPH\_OPEN, kernel) closing image = cv2.morphologyEx(image, cv2.MORPH CLOSE, kernel)




#### **OpenCV / Gradient**

morphological transforms

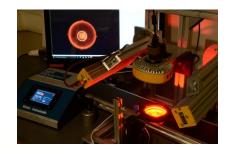






#### kernel

| 0 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 0 | 1 | 0 |


#### Gradient

**Difference** between a dilation and an erosion

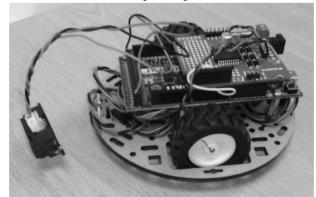
Unknown pixels classification : background or foreground ?

gradient\_image = cv2.morphologyEx(image, cv2.MORPH\_GRADIENT, kernel)

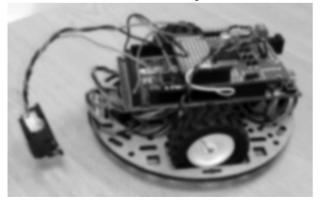




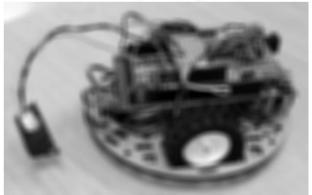
## OpenCV / Blur and Mean morphological transforms


Acquisition

**Pre Processing** 


 $kernel\_size = (N,M)$ 

blurred\_image\_gauss = cv2.GaussianBlur(image, kernel\_size, 0) blurred\_image\_box = cv2.blur(image, kernel\_size)


Original Image



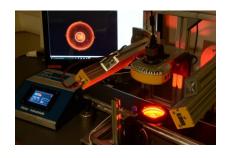
Gaussian Blur Image



Median/Box Blur Image



**Gaussian Kernel** (x 1/273)


Mean Kernel ( x 1/(N\*M) )

| 1/9 | 1/9 | 1/9 |
|-----|-----|-----|
| 1/9 | 1/9 | 1/9 |
| 1/9 | 1/9 | 1/9 |

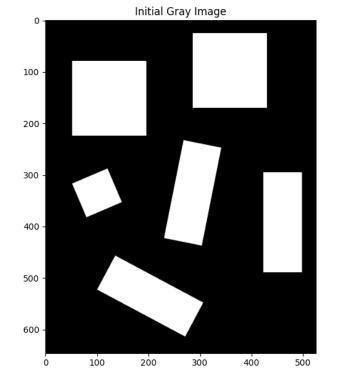
| 1 | 4  | 7  | 4  | 1 | ı |
|---|----|----|----|---|---|
| 4 | 16 | 26 | 16 | 4 |   |
| 7 | 26 | 41 | 26 | 7 |   |
| 4 | 16 | 26 | 16 | 4 |   |
| 1 | 4  | 7  | 4  | 1 |   |

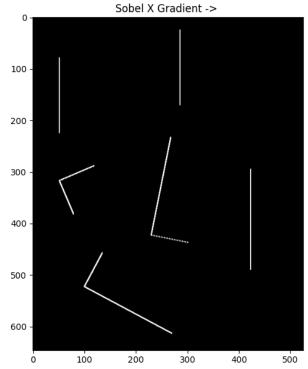
Removing irrelevant details



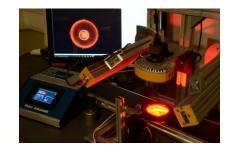


#### OpenCV / Sobel





sobel\_kernel\_x1 = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])

sobelx\_1 = cv2.filter2D(image, -1, sobel\_kernel\_x1)


#### kernel

| -1 | 0 | 1 |
|----|---|---|
| -2 | 0 | 2 |
| -1 | 0 | 1 |







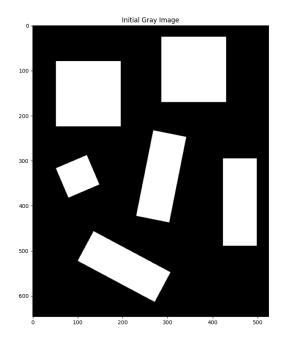


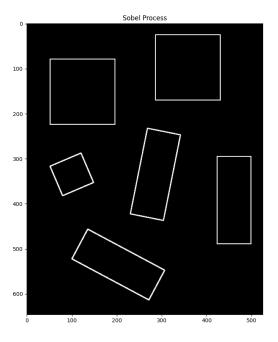
#### OpenCV / Sobel

Acquisition

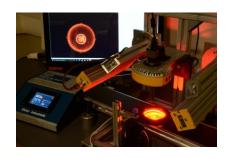
**Pre Processing** 

sobelx = cv2.Sobel(image\_gray, cv2.CV\_64F, 1, 0, ksize=3)


sobely = cv2.Sobel(image\_gray, cv2.CV\_64F, 0, 1, ksize=3)


magnitude = cv2.magnitude(sobelx, sobely)

magnitude = cv2.convertScaleAbs(magnitude)


#### kernel

| -1 | 0 | 1 |
|----|---|---|
| -2 | 0 | 2 |
| -1 | 0 | 1 |









#### Goal of processing an image

Acquisition

**Pre Processing** 

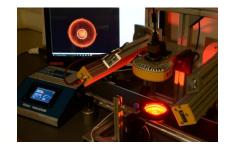
Segmentation

**Feature Extraction** 

https://docs.opencv.org/4.x/d3/db4/tutorial\_py\_watershed.html

Thresholding
Edge Detection
Region of Interest Selection

Geometric Features
Texture Analysis
Color Analysis


Isolating objects of ROI / Separating product from background Identifying boundaries and contours
Focusing only on relevant portions of the image

Extracting measurements (size, shape, position...)
Recognizing patterns, symbols, points of interest



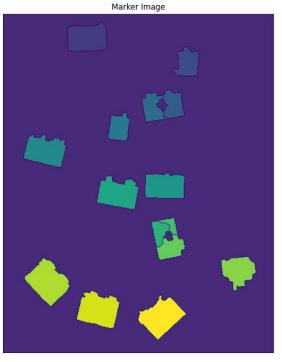
## Continuing Education

Formation Continue



## SC19 – Image Processing

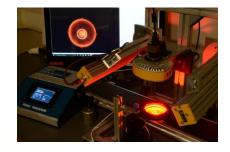
#### **Segmentation and Feature extraction**


Acquisition

Pre Processing

**Segmentation** 

**Feature Extraction** 








Watershed method





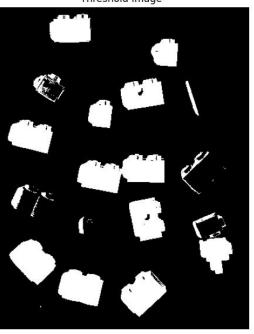
#### **Segmentation and Feature extraction**



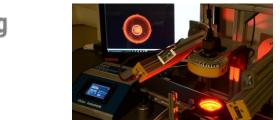
**Pre Processing** 

**Segmentation** 

**Feature Extraction** 


Original RGB Image




Gray Image



Threshold Image







#### **Segmentation and Feature extraction**

Acquisition

**Pre Processing** 

**Segmentation** 

**Feature Extraction** 

Sure BG Image

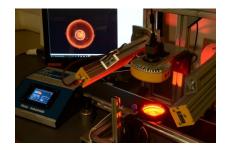


Sure FG Image



Original Image




Labelling Image

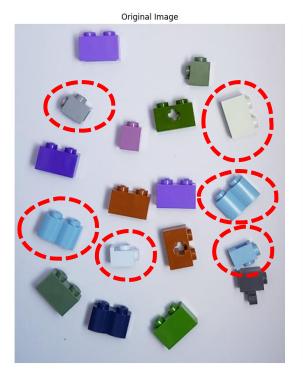


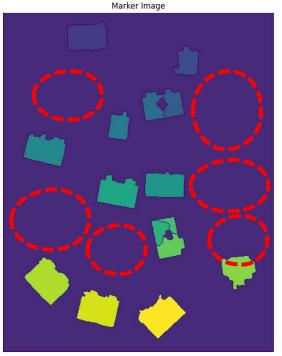
Watershed method / Second step - Sure BG/FG image

Watershed method / Third step - Labelling






#### **Segmentation and Feature extraction**


Acquisition

Pre Processing

**Segmentation** 

**Feature Extraction** 



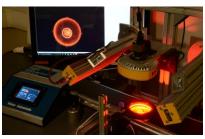




Watershed method

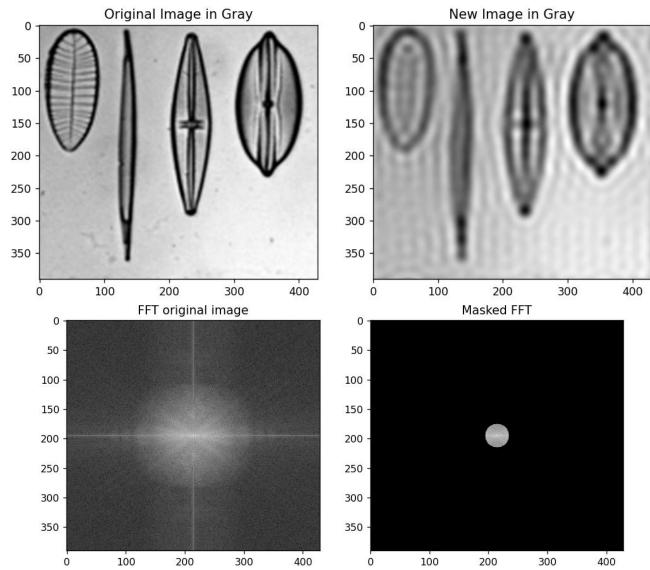


## Continuing Education


Formation Continue

Acquisition

**Pre Processing** 


**Segmentation** 

**Feature Extraction** 



## SC19 – Image Processing

#### **Fourier Transform and Filtering**

