

Institut d'Optique Graduate School Interfaçage Numérique

INTERFAÇAGE NUMÉRIQUE

Travaux Pratiques

Semestre 6

Robotique et systèmes embarqués

4 séances

Robotique et systèmes embarqués

À l'issue des séances de TP concernant le **bloc de robotique** (4 séances), les étudiant es seront capables de ? ? ? .

Ce sujet est disponible au format électronique sur le site du LEnsE - https ://lense.institutoptique.fr/ dans la rubrique Année / Première Année / Interfaçage Numérique S6 / Bloc Robot.

Pour cela, ils elles seront capables de : ____??

Objectifs du mini-projet

L'objectif principal de ce mini-projet est de **développer le code embarqué d'une plateforme robotique** lui permettant :

- soit de se déplacer de manière autonome le long d'une ligne sans percuter d'obstacle.
- soit d'être piloter à distance par une télécommande et d'afficher des informations provenant de capteurs intégrés à la plateforme.

Ressources

Matériel : robot Joy-It car, télécommande, logiciel Arduino, carte Nucléo L476RG, capteurs, cartes de communication nRF24L01

Un descriptif des ressources de la plateforme robotique est disponible dans la suite de ce document. Tutoriaux Arduino

Codes d'exemple : Communication entre deux nRF24, affichage sur écran LCD...

Déroulement du bloc

La liste des étapes à suivre pour la réalisation du programme embarqué de la plateforme robotique est donnée à titre indicatif. L'ordre et le choix des différentes étapes sont laissés à l'appréciation des différents binômes.

Afin de faciliter la réutilisation des codes, il pourra être intéressant de définir des fonctions pour le pilotage des différents éléments.

Déplacements élémentaires

Les deux premières séances sont communes sur la démarche de conception d'une application embarquée.

Séance 1 - Prise en main de la maquette et premiers programmes Arduino

Etape 1 - 30 min Piloter des sorties numériques - LED

Etape 2 - 30 min Acquérir des données numériques - Bouton-poussoirs (interruptions)

Etape 3 - 60 min Acquérir des données analogiques - Potentiomètres

Etape 4 - 30 min Utiliser des sorties modulées en largeur d'impulsion (PWM) - LEDs

Etape 5 - 90 min Piloter les deux moteurs du robot

Séance 2 - Capteurs et bibliothèques

Etape 6 - 60 min Piloter les phares du robot à l'aide de la bibliothèque WS2812 (NeoPixel)

Etape 7 - 30 min Acquérir des données du capteur de température analogique

Etape 8 - 60 min Acquérir des données des capteurs de ligne

Etape 9 - 90 min Acquérir des données de l'accéléromètre (I2C)

Pilotage de haut niveau

Les deux séances suivantes seront consacrées au pilotage du robot en fonction du cahier des charges choisi (suivi d'une ligne ou pilotage par une télécommande).

Robot autonome / Suivi Ligne

Réalisable par un seul binôme

Etape A11 - 120 min Définir et tester une première structure de code permettant de piloter les deux moteurs du robot en fonction de la détection des lignes

Etape A12 - 90 min Acquérir les signaux du capteur ultrason

Etape A13 - 90 min Piloter le servomoteur associé au capteur ultrason

Etape A14 - 180 min Améliorer le programme de contrôle du robot

Robot télécommandé

Réalisable par association de deux binômes, un binôme sur la télécommande (t) et un autre sur le robot (r)

Etape T11t - 60 min Prendre en main la maquette de la télécommande

Etape T12t - 60 min Acquérir les données provenant du joystick

- **Etape T11r 120 min** Définir et tester une première structure de code permettant de piloter les deux moteurs du robot en fonction d'un ordre de direction
- **Etape T13 120 min** Utiliser la bibliothèque nRF24 pour mettre en place un échange de données entre la télécommande et le robot

Etape T14t - 60 min Transmettre les données de direction depuis la télécommande vers le robot

Etape T14r - 60 min Traduire les données de direction en ordre pour les moteurs du robot

Etape T15 - 180 min Améliorer le programme de contrôle du robot (utilisation de l'écran LCD de la télécommande pour afficher la direction, les données de température, de l'accéléromètre...)

— Tutoriaux Arduino :

- Projet Arduino et structure d'un code embarqué
- Entrées/Sorties Numériques
- Entrées Analogiques
- Sorties PWM
- Utilisation d'une bibliothèque
- Liaison série
- Liaison SPI / I2C
- Communication avec nRF24L01
- Pilotage d'un composant de puissance
- Mise en place d'un protocole d'échange de données

Séance 2 / Capteurs et bibliothèques

Etape 9 - Acquérir des données de l'accéléromètre (I2C)

Temps conseillé : 90 min

Le composant que nous allons étudier est un **accéléromètre et magnétomètre** intégrés sur une même puce de silicium. Sa référence est **FXOS8700CQ**. Ce composant est intégré au module *MikroE* **DOF6 - IMU Click**.

Protocole I2C

DESCRIPTION PROTOCOLE et CONNECTIQUES !

ATTENTION! Les broches utilisées sur la carte Nucléo pour l'I2C ne sont pas celles par défaut. Il est indispensable de préciser les broches SDA et SCL à l'aide des méthodes suivantes :

1 Wire.setSDA(PB9); 2 Wire.setSCL(PB8);

→ M Ouvrir le code 09_accelero.ino fourni. Compiler ce code et téléverser ce code dans la carte Nucléo.

Ce code contient les fonctions *test_FXOS()* et *read_i2c_buffer()*, ainsi que des définitions des registres internes du composant.

→ M

Configuration

Récupération des données

These registers contain the X-axis, Y-axis, and Z-axis 14-bit left-justified sample data expressed as 2's complement numbers. [NXP Doc p.52 of 113]

Traceur Série

```
Serial.print(valeur1);
1
2
     Serial.print(",");
3
     Serial.print(valeur2);
4
     Serial.print(",");
5
     Serial.print(valeur3);
6
     Serial.print(",");
7
     Serial.print(valeur4);
8
     Serial.println();
```


Pilotage / Robot télécommandé

Etape A13 - Piloter le servomoteur associé au capteur ultrason

Temps conseillé : 90 min

Utilisation de la sortie modulée PB7

1 LL_GPIO_SetAFPin_0_7(GPIOB, GPIO_PIN_7, GPIO_AF1_TIM2);

Pilotage / Robot télécommandé

Etape T13 - Communication avec des modules nRF24L01

Installation de la bibliothèque RF24 sur Arduino.

Protocole SPI

Changer les broches par défaut pour la liaison SPI

Ces lignes doivent être exécutées AVANT de démarrer logiciellement le module nRF24 (avant la ligne *radio.begin()*).

- 1 SPI.setMISO(SPI_MISO);
- 2 SPI.setMOSI(SPI_MOSI);
- 3 SPI.setSCLK(SPI_SCK);

Côté robot :

14
15
210
211
212

Côté télécommande :

1	#define	NRF_CE	PA15
2	#define	NRF_CSN	PB7
3	#define	NRF_INT	PA14
4	#define	SPI_SCK	PA5
5	#define	SPI_MISO	PA6
6	#define	SPI_MOSI	PA7

Robot Joy-It Car / Présentation du matériel

La tension maximale admissible par les moteurs est de $7\,\mathrm{V}\,!$

Institut d'Optique Graduate School Interfaçage Numérique

INTERFAÇAGE NUMÉRIQUE

Travaux Pratiques

Semestre 6

Ressources

Bloc Robot

Liste des ressources

- Schéma de la carte du robot Joy-It CarPCB de la carte du robot Joy-It Car

