

OptoElec & ONIP-1 / TD Systèmes et Signaux

SÉANCE 1 / SYSTÈMES ASSERVIS

Exercice 1 / Modélisation numérique d'un système / ALI

Soit un système $A(j\omega)$ de type passe-bas, d'ordre 1, de gain statique A_0 et de pulsation de coupure w_0 .

- 1. Donner la fonction de transfert de ce système.
- 2. A l'aide de la bibliothèque **control** sous Python, définir la fonction de transfert de ce système à l'aide de la fonction tf.
- 3. Tracer la réponse en fréquence de ce système à l'aide de la fonction bode plot.
- 4. Tracer la **réponse indicielle** à l'aide de la fonction *step_response*, puis **impulsionnelle** à l'aide de la fonction *impulse_response*.
- 5. Calculer et afficher la transformée de Fourier de la réponse impulsionnelle. Que pouvez-vous en conclure ?

Applications Numériques : $A_0 = 10^5$, $f_0 = 30$ Hz.

Exercice 2 / Rebouclage d'un système - Système asservi / ALI en régime "linéaire"

Il est possible de reboucler un système à l'aide d'un autre système. On parle alors d'un système asservi.

On prendra ici le système A pour la boucle d'action et un système $B(j\omega) = 1/K$, où K est une constante, comme système de contre-réaction.

- 1. Tracer le schéma bloc de ce système puis donner la fonction de transfert de ce système.
- 2. Que vaut le **produit** du gain statique par la fréquence de coupure de ce système ? Comparer cette valeur à celui du système A. Que pouvez-vous en conclure ?
- 3. Définir la fonction de transfert du système B à l'aide de la fonction tf.
- 4. Définir un système C qui est le système complet avec la rétro-action, à l'aide de la fonction feedback.
- 5. Tracer la **réponse en fréquence** des systèmes A et C à l'aide de la fonction bode_plot sur un même graphique.
- 6. Tracer la **réponse indicielle** des systèmes A et C à l'aide de la fonction $step_response$ sur un même graphique.

Applications Numériques : $A_0 = 10^5$, $f_0 = 30$ Hz et K = 1 puis K = 10.

Exercice 3 / Système du second ordre

On se propose de simuler un système du second ordre dont la fonction de transfert peut être mise sous la forme suivante :

$$H(j\omega) = \frac{A_0 \cdot (\frac{j \cdot \omega}{\omega_0})^2}{1 + 2 \cdot m \cdot \frac{j \cdot \omega}{\omega_0} + (\frac{j \cdot \omega}{\omega_0})^2}$$

- 1. Définir ce système.
- 2. Tracer la réponse en fréquence de ce système pour m = [0.1, 0.5, 0.7, 1.0, 2] sur un même graphique.
- 3. Tracer la réponse indicielle de ce système pour m = [0.1, 0.5, 0.7, 1.0, 2] sur un même graphique.

Applications Numériques : $A_0 = 10$, $f_0 = 1000 \,\mathrm{Hz}$.

BIBLIOTHÈQUE CONTROL

Plus d'aide sur la bibliothèque control : https://python-control.readthedocs.io/en/0.10.1/

Pour importer la bibliothèque control :

```
1 import control as ct
```

Définir un système

La définition d'un système par l'intermédiaire d'une fonction de transfert se fait à l'aide de la fonction tf:

Tracer la réponse en fréquence d'un système

Il est possible de tracer la réponse en fréquence d'un système à l'aide de la fonction bode plot :

```
1 ct.bode_plot(sys1)
2 plt.show()
```

Attention : cette fonction se base sur la bibliothèque Pyplot de Matplotlib. Il est indispensable de l'importer et de faire appel à la fonction show() pour visualiser les graphiques.

Il est également possible de passer une liste de système en argument de la fonction bode_plot afin de comparer plusieurs systèmes entre eux.

Tracer la réponse indicielle d'un système

Il est possible de tracer la réponse à un échelon d'un système à l'aide de la fonction step_response :

```
1 time = np.arange(0, 0.1, 0.0001)
2 T, yout = ct.step_response(sys1, time)
```

Cette fonction renvoie deux vecteurs : un vecteur temps (T) et le signal de sortie de la réponse à l'échelon (yout). Le vecteur time n'est pas indispensable. S'il n'est pas fourni, il est automatiquement calculé par la fonction $step_response$.

Pour pouvoir afficher le graphique associé, il est indispensable d'utiliser une bibliothèque graphique de type Pyplot de Matplotlib.

Tracer la réponse impulsionnelle d'un système

Il est possible de tracer la réponse à une impulsion d'un système à l'aide de la fonction impulse response :

```
1 time = np.arange(0, 0.1, 0.0001)
2 T, yout = ct.impulse_response(sys1, time)
```

Cette fonction renvoie le même type de données que step_response

Reboucler un système

Il est possible de reboucler un système par un autre système à l'aide de la fonction feedback :

```
1 sys = ct.feedback(sys1, sys2)
```