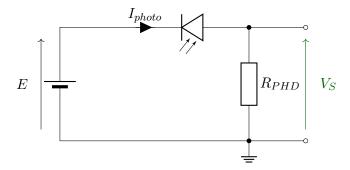


OPTO-ELECTRONIQUE

TP Introduction

Durée : 3h / Découverte de la photodétection / Capteur de luminosité


Objectifs de l'expérience

L'objectif du TP est de réaliser un éclairage adaptatif en fonction de la luminosité de l'environnement mesurée grâce à un capteur de type photodiode.

Cette séance a également pour but de vous familiariser avec l'utilisation des appareils de mesure mis à votre disposition au cours des séances de Travaux Pratiques d'Opto-Electronique.

PARTIE A - Capteur de luminosité

On s'intéresse au montage suivant avec $E=5\,V$ et $R_{PHD}=100\,k\Omega$:

Une photodiode est un composant électronique fournissant un courant d'intensité proportionnelle à la valeur de l'éclairement appliquée sur celle-ci. Les caractéristiques de la photodiode étudiée (SFH206K) sont fournies ci-dessous :

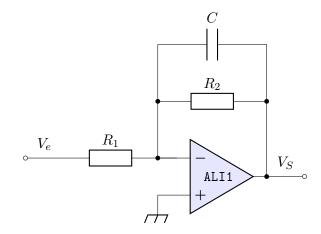
Characteristics

 $T_{\Delta} = 25 \,^{\circ}\text{C}$

Parameter	Symbol		Values
Spectral sensitivity	S	min.	50 nA/lx
V _B = 5 V; Std. Light A; T = 2856 K		typ.	80 nA/lx

A1 - Etude du capteur

- Mesurer l'éclairement moyen de la salle à l'aide d'un luxmètre. Estimer la valeur de la tension qui apparaitra aux bornes de la résistance R_{PHD} lorsque le circuit est alimenté avec une tension $E=5\,V$.
 - Câbler le montage ci-dessus et mettre en place une mesure de la tension aux bornes de R_{PHD} .
- Visualiser la tension aux bornes de R_{PHD} à l'aide d'un oscilloscope et comparer le signal observé au signal attendu.

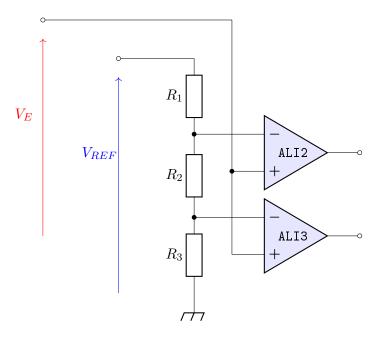

A2 - Mise en forme du signal

On se propose d'utiliser le montage suivant pour supprimer les composantes fréquentielles non souhaitées. Tous les potentiels sont référencés par rapport à la masse.

La fonction de transfert de ce montage est la suivante :

$$\frac{V_s}{V_e} = -\frac{R_2}{R_1} \cdot \frac{1}{1 + j \cdot R_2 \cdot C \cdot \omega}$$

• Quelle fréquence de coupure choisir pour répondre au cahier des charges ?



- Câbler ce montage et faire une étude fréquentielle de son fonctionnement pour confirmer qu'il réalise bien la fonction souhaitée. L'ALI sera alimenté à l'aide d'une alimentation symétrique de +/- 5V.
- Cascader alors le capteur de luminosité avec le circuit proposé et conclure quant à l'amélioration effective du signal. Ajuster le montage si nécessaire

PARTIE B - Comparateur

On souhaite caractériser 3 niveaux de luminosité spécifiques qui amèneront à l'adaptation de l'éclairage de l'environnement. Pour cela, on propose le circuit suivant à connecter directement en sortie des montages précédents.

- Expliquer le principe de fonctionnement de ce montage.
- Proposer un montage simple (et visuel) à placer en sortie des amplificateurs linéaires afin de pouvoir visualiser le fonctionnement du système.
- Câbler le montage en proposant une valeur pertinente pour U_{ref} . On prendra $R_1 = R_2 = R_3 = 3.3 \,\mathrm{k}\Omega$. Vérifier le bon fonctionnement de ce circuit.
- Cascader alors l'ensemble des circuits afin d'obtenir le système complet et vérifier son bon fonctionnement, notamment lorsque le capteur de luminosité est placé dans l'ombre.

LIVRABLES

Vous devez pour chaque expérience proposée dans ce sujet :

- Rédiger le protocole de mesure utilisé, incluant le paramétrage des différents instruments de mesure.
- Reporter les mesures effectués et réaliser des captures d'oscilloscope de signaux pertinents.
- Analyser les résultats et comparer aux attentes prévues.