

Photonique expérimentale

Optique cohérente

Introduction		
1	Interférométrie de Speckle - DSPI	3
2	Sonde homodyne & Sonde hétérodyne	19
3	DOEs	29
4	SLM	39
5	Speckle : rugosité et diffraction	57

Salles C1 C2 C3 C4 C5 S1.28 R1.55 S1.26 S1.24 S1.30

lense.institutoptique.fr / Troisième année/ Photonique $3A\,|\,M2$

Introduction

Dans ce bloc de TP Optique Cohérente, nous nous intéresserons aux applications de l'optique cohérente, avec différents montages ayant pour point commun de travailler avec l'amplitude de l'onde optique, et donc de mesurer ou manipuler la phase de l'onde optique et les propriétés de cohérence de la lumière. Cette phase sera utilisée pour accéder à des informations sur la déformation ou la vibration d'un objet par des mesures spatiales (TP DSPI) ou temporelles (sonde homodyne / hétérodyne) des interférences entre deux faisceaux cohérents. Le processus de diffraction utilisé dans les modulateurs de lumière (TP SLM) et les systèmes diffractifs calculé par ordinateurs (TP DOE) utilisent de leur côté la phase de l'onde optique pour contrôler la formation de structures diffraction spécifique dans le plan de Fourier. Dans tous les systèmes étudiés dans ce bloc, on utilise ou, parfois, on cherche à éviter un phénomène de diffusion cohérente propre à l'interaction de la phase de l'onde optique avec les défauts aléatoires des milieux optiques traversés, le speckle dont les propriétés seront étudiées dans une expérience spécifique (TP Speckle).

Indications bibliographiques

Optique cohérente : fondements et applications. Werner Lauterborn, Thomas Kurz, Martin Wiesenfeldt, Elsevier Masson, 1997.

Manuel d'optique. Germain Chartier, Hermes Science Publications, 2020.

C 1

Interférométrie de Speckle - DSPI

Version du 11 septembre 2025

Objectifs pédagogiques. A l'issue de la séance, vous serez capables :

- d'aligner et de régler les paramètres géométriques d'un dispositif de mesure holographique sur un objet diffusant,
- de mettre en oeuvre des protocoles expérimentaux et des algorithmes de traitement d'images permettant d'obtenir à partir de ce montage :
 - une cartographie des déformations mécaniques submicroniques de cet objet par deux méthodes, dont une méthode à décalage de phase,
 - une cartographie des amplitudes de vibration submicroniques de cet objet par deux méthodes, dont une méthode à décalage de phase,
- d'analyser les performances de ces méthodes et de les comparer entre elles.

Sommaire

Introduction					
1	Principe et dispositif expérimental	4			
2	Interférométrie de speckle. Mesures à deux images	9			
3	Pour aller plus loin : algorithmes de décalage de phase	13			

Introduction

Le but de cette manipulation est de construire un dispositif expérimental capable de mettre en évidence et de mesurer des déformations submicroniques d'un objet diffusant. Le principe de cette technique de mesure en temps réel et sans contact repose sur l'analyse de la phase d'un champ de grains speckle par une méthode interférométrique utilisant une source laser. Ce TP sera aussi l'occasion de revisiter ou de s'initier à quelques notions générales concernant le phénomène de speckle (vous pouvez d'ailleurs consulter à ce sujet le texte du TP Speckle 3A).

1 Principe et dispositif expérimental

Dans son principe un montage interférométrique permet une mesure des déformations d'un objet grâce à l'analyse des franges d'interférence et de leur évolution lorsque l'objet se déforme. Toutefois ce type d'analyse directe requiert de pouvoir résoudre les franges d'interférence, ce qui n'est possible qu'avec un objet peu déformé et surtout avec un très bon état de surface. Dès que l'on travaillera avec un objet rugueux et diffusant, le front d'onde issu de l'objet sera très déformé et la figure d'interférence sera noyée dans une structure d'interférence aléatoire liée à la diffusion de la lumière cohérente sur l'objet : le speckle. Les franges noyées dans ce phénomène aléatoire ne peuvent alors plus être distinguées et donc ne peuvent plus être analysées directement pour extraire l'information sur la déformation de l'objet. Malgré tout, l'information interférométrique existe toujours et peut être traitée de manière indirecte pour retirer l'information souhaitée, grâce à la technique de *Digital Speckle Pattern Interferometry (DSPI)* qui sera étudiée dans ce TP.

1.1 Schéma du montage

La figure 1.1 décrit dans son principe le montage expérimental.

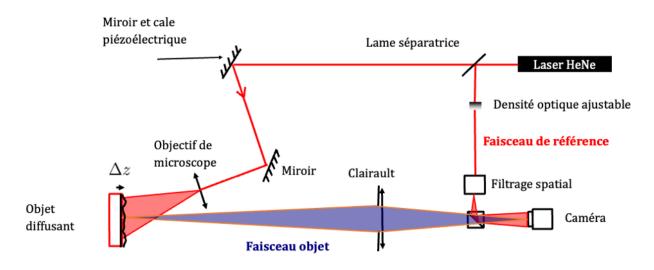


FIGURE 1.1 – Schéma du dispositif expérimental

Sur le schéma, on distingue les deux voies optiques suivantes :

- La première voie, située dans le prolongement du laser ($\lambda = 633 \, \mathrm{nm}$), sert à illuminer l'objet puis à former son image sur la rétine de la caméra CMOS,
- La deuxième voie sert à former l'onde de référence.

On retrouve ici le principe de l'holographie classique (sur plaque photographique). L'onde de référence et l'onde provenant de l'objet interfèrent dans le plan de la CMOS. L'onde de référence permet de "coder" la phase des grains de speckle présents dans l'image de l'objet. La source lumineuse utilisée est un laser afin de disposer d'une longueur de cohérence suffisante et d'une luminance élevée.

1.2 Principe de l'interférométrie de speckle

Dans le plan de la caméra, l'intensité liée au système d'interférence s'écrit :

 $I_{\text{Inter}}(x, y, t) =$

$$I_{0}\left(x,y\right)\left[1+m\left(x,y\right)\cos\left(\left(\vec{k}_{R}-\vec{k}_{S}\right).\vec{r}+\varphi_{\mathsf{Obj}}\left(x,y\right)+\Delta\varphi\left(x,y,t\right)\right)\right]$$

où $\left(\vec{k}_R - \vec{k}_S\right) . \vec{r}$ (avec $\vec{r} = (x,y)$) correspond au système de franges d'interférence entre les deux faisceaux se propageant dans les directions moyennes \vec{k}_R pour la référence et \vec{k}_S pour le signal.

Ce système d'interférence est modulé par la structure de speckle caractérisée par $\varphi_{\text{Obj}}\left(x,y\right)$ la phase aléatoire correspondant à la diffusion de la lumière sur l'objet rugueux.

Enfin, $\Delta \varphi \left(x,y,t \right)$ (supposé varier lentement en (x,y)) est **le changement de phase dû à la déformation de l'objet que l'on cherche à mesurer.** Le système d'interférence est finalement caractérisé par l'intensité moyenne des faisceaux $I_0 \left(x,y \right)$ et la modulation des franges $m \left(x,y \right)$, dont on suppose qu'ils ne sont pas modifiés lors de la déformation de l'objet.

Lors de la mesure, ce signal d'interférence est détecté par la caméra CMOS constitué de pixels de taille P_e . Chaque pixel intégrera le signal d'interférence incident sur sa surface S_p , ce qui imposera des conditions sur la taille des grains de speckle et le pas des franges afin d'accéder au signal de déformation qui nous intéresse. En effet le signal détecté par un pixel de coordonnées (x_p,y_p) est donné par :

$$\begin{split} I_{\text{Pixel}}\left(x_{p}, y_{p}, t\right) = \\ \int_{S_{p}} I_{0}\left(x, y\right) \left[1 + m\left(x, y\right) \cos\left(\left(\vec{k}_{R} - \vec{k}_{S}\right) . \vec{r} + \varphi_{\text{Obj}}\left(x, y\right) + \Delta\varphi\left(x, y, t\right)\right)\right] dx dy \end{split}$$

Pour accéder à $\Delta \varphi \left(x,y,t \right)$, il faut donc absolument que les termes $\left(\vec{k}_R - \vec{k}_S \right) . \vec{r}$ et $\varphi_{\text{Obj}} \left(x,y \right)$ varient peu sur la surface du pixel, pour que le terme du cosinus de la phase ne soit pas moyenné à zéro. Cela impose donc d'une part que le pas des franges soit supérieur à la taille des pixels de la caméra, et d'autre part que la taille des grains de speckle soit supérieure à cette même taille des pixels de la caméra.

Dans ces conditions, l'intensité détectée par chaque pixel de la caméra est donnée par :

$$I_{\text{Pixel}}(x_p, y_p, t) = I_0(x_p, y_p) \left[1 + m(x_p, y_p) \cos(\varphi_0(x_p, y_p) + \Delta \varphi(x_p, y_p, t)) \right]$$
(1.1)

où $\varphi_0(x_p, y_p)$ est une fonction de phase stationnaire (c'est à dire indépendante du temps) qui varie aléatoirement d'un pixel de la caméra à l'autre.

1.3 Alignement et réglage du dispositif

Pour la prise d'image et la mise en œuvre des algorithmes de traitement (ainsi que le pilotage de cale piézo-électrique du miroir de la voie de référence) on utilise un logiciel développé au LEnsE (écrit en langage python) disponible sur le bureau de l'ordinateur.

Mise en place de la voie objet L'objet est une céramique piézo-électrique dont on veut étudier la déformation.

- → Bloquer la référence dans un premier temps.
- → Lancer le logiciel DSPI et régler le temps d'exposition et le gain de la caméra.
- Construire la voie d'éclairage de l'objet. On orientera le faisceau d'éclairage de telle façon que le lobe de diffusion intercepte correctement la pupille de l'objectif. Cette pupille est un diaphragme à iris placé contre le clairaut de focale $100\,\mathrm{mm}$. Le diamètre de ce diaphragme est donc réglable et la graduation se trouve sur sa tranche.
- Rechercher précisément la meilleure mise au point en translatant la caméra.
- Q1 Comment peut-on effectuer une mise au point précise? Quelle est l'influence du diamètre de la pupille sur la précision de ce réglage de mise au point?

Mise en place de la voie de référence et observation du système de franges Le faisceau de référence doit se superposer au faisceau signal sur la caméra en la couvrant de manière uniforme.

- → Bloquer le signal.
- Effectuer le réglage de l'épuration laser de façon à avoir un faisceau de référence qui couvre largement la caméra CMOS et vérifier la position du cube séparateur pour que le faisceau soit superposé au faisceau issu de la cible sur la caméra.
- Placer et régler la (ou les) densité(s) pour ajuster l'équilibre en intensité entre les deux voies du dispositif.

Le montage interférométrique est ici de type Mach-Zehnder, le pas des franges dépend donc de l'angle moyen entre les deux faisceaux interférant. Toutefois, compte tenu de sa structure, on peut aussi décrire notre montage comme un montage interférométrique de type "trous d'Young".

- **Q2** Par quels éléments du montage ces deux "trous d'Young" sont-ils matérialisés? En déduire comment on peut faire varier expérimentalement le pas des franges d'interférences.
- Fermer suffisamment le diaphragme pour obtenir des grains de speckle de grand diamètre et observer l'image du champ de speckle **en présence de la référence**.
- Observer l'allure des franges présentes dans le champ de speckle lorsque l'on fait varier la position transversale (verticalement et horizontalement) du diaphragme.

Chaque grain de speckle peut localement être assimilé à une onde plane possèdant une phase à peu près constante (volume de cohérence), cette phase variant aléatoirement d'un grain à l'autre.

- **Q3** Comment vérifier expérimentalement que la phase est à peu près uniforme dans un grain de speckle?
- Négler les différents éléments afin d'assurer cette uniformité.

1.4 Étude des propriétés de la figure de speckle

Dans cette partie, le faisceau de référence est coupé, on ne travaille qu'avec le faisceau signal issu de la cible. Toutes les mesures de la section 1.4 seront effectuées pour 4 tailles différentes du diamètre du diaphragme : 1, 3, 5 et $10 \, \mathrm{mm}$.

Le montage permet une étude détaillée de la figure de speckle obtenue sur la rétine de la caméra. Cette étude conduira à choisir à bon escient les paramètres optiques du montage afin d'obtenir les meilleurs résultats en interférométrie de speckle.

Diamètre moyen des grains de speckle Nous allons étudier précisément la répartition d'éclairement en utilisant un logiciel de traitement de l'image de la caméra.

- → Lancer le logiciel DSPI pour acquérir une image du champ de speckle.
- Mesurer approximativement le diamètre moyen des grains de speckle dans l'image en pixels en utilisant l'outil de zoom.
- **Q4** En déduire une valeur approximative du diamètre moyen des grains de speckle (le pas d'échantillonnage, P_e , est fixé par la dimension des pixels de la matrice CMOS, soit $P_e = 4.8 \, \mu \text{m}$). Quelle est la principale cause de l'imprécision de cette mesure?
- **Q5** La taille moyenne des grains de speckle est donnée par la taille de la tache de diffraction. Calculer le diamètre moyen théorique d'un grain de speckle en fonction des paramètres géométriques du montage optique utilisé.

La largeur moyenne des taches de la figure de speckle peut aussi être obtenue plus précisément en mesurant la largeur de la fonction d'autocorrélation de l'éclairement. Cette fonction peut-être calculée aisément en utilisant la transformée de Fourier :

$$Cor(E(\vec{r}_1), E(\vec{r}_2)) = TF^{-1}[TF[E(\vec{r})].TF[E(\vec{r})]^*]$$

→ Valider brièvement cette méthode.

- Effectuer le calcul de cette fonction sur la partie centrale de l'image (où la répartition d'éclairement paraît bien uniforme).
- **Q6** Comparer la largeur de la fonction d'autocorrélation à la valeur précédente et à la valeur attendue. Commenter.

Étude de l'échantillonnage du champ de speckle par la rétine de la caméra Une autre manière d'évaluer la taille des grains de speckle est de passer dans le domaine des fréquences spatiales en calculant la transformée de Fourier 2D (ou de manière équivalente la transformée de Fourier Inverse) de la répartition d'éclairement.

- **Q7** Quel est le lien entre l'amplitude dans le plan de la caméra $A_C(x,y)$ et la répartition spatiale de l'amplitude $A_{Pup}(X,Y)$ de l'onde optique au niveau de la pupille dans le plan du diaphragme? En déduire la valeur de l'intensité $I_C(x,y)$.
- **Q8** À quelle quantité relie-t-on alors la transformée de Fourier Inverse de $I_C(x,y)$? Quelle est sa forme spatiale attendue?
- Effectuer la transformée de Fourier du centre de l'image du champ de speckle pour les différents diamètres du diaphragme à iris.
- **Q9** Expliquer pourquoi la largeur attendue de cette transformée de Fourier est déterminée par la fréquence de coupure de la fonction de transfert de modulation idéale de l'objectif (soit $1/\lambda N_{\rm image}$ où $N_{\rm image}$ est le nombre d'ouverture image).
- → Vérifier ce résultat pour plusieurs diamètres de diaphragme.

La structure d'éclairement dans le plan de la caméra est échantillonnée par les pixels de la caméra, ce qui induit une fréquence de coupure supplémentaire qui vient en compétition avec la fréquence de coupure liée à la pupille du montage.

Q10 Expliquer brièvement pourquoi un pixel du spectre correspond à :

$$\frac{F_e}{N_e} = \frac{1}{N_e P_e}$$

où $P_e=4.8\,\mu\mathrm{m}$, est la dimension d'un pixel et N_e le nombre de points utilisés pour calculer la FFT.

Q11 Quelle est la fréquence spatiale maximale mesurée par la caméra? À quoi correspondelle en pratique lorsque l'on calcule la transformée de Fourier du champ de speckle?

Q12 Dans la suite on cherchera à mesurer des déformations spatiales du diffuseur et on a vu que pour cela la taille des grains de speckle doit être prise supérieure à celle des pixels. Quel critère utiliser sur l'image de la FFT pour faire ce choix? Quel diamètre du diaphragme à iris faut-il prendre?

1.5 Étude des propriétés de la figure d'interférence

Dans cette partie, le faisceau de référence est remis en place, on travaille maintenant avec les deux faisceaux.

La caméra comme tout récepteur optique n'est sensible qu'à l'éclairement. Toutefois l'ajout d'une onde de référence permet d'accéder à la phase du champ de speckle. Le montage interférométrique est ici de type Mach-Zehnder, le pas des franges dépend donc de l'angle moyen entre les deux faisceaux interférant.

- Q13 Quelle condition doit vérifier le pas des franges par rapport à la dimension des pixels de la caméra pour qu'elles soient observables? Quel est l'angle maximal entre les faisceaux permettant de respecter cette condition?
- Se placer dans la situation où les franges sont serrées. Effectuer et comparer la transformée de Fourier des images « speckle + référence », « speckle seul » et« référence seule ».
- Q14 Écrire l'intensité dans le plan de la caméra $I_C(x,y)$ en fonction de la répartition spatiale de l'amplitude $A_{Pup}(X,Y)$ de l'onde optique au niveau de la pupille dans le plan du diaphragme et de l'amplitude de l'onde de référence $A_{Ref}(x,y)$ (que l'on supposera uniforme dans le plan de la caméra, $A_{Ref}(x,y) = A_{Ref_0}$).
- Q15 Calculer la transformée de Fourier Inverse de $I_C(x,y)$. Identifier les différents termes de cette expression avec les "taches" observées et déterminer les taches correspondant aux franges. De quel paramètre dépend la distance entre ces taches?
- **Q16** Pourquoi la tache centrale est-elle deux fois plus large? Expliquer ce résultat en utilisant le calcul de la transformée de Fourier Inverse de $I_C(x,y)$ en présence de l'onde de référence.
- Q17 Proposer une méthode pour régler la position du diaphragme et son diamètre.

2 Interférométrie de speckle. Mesures à deux images

Régler le montage de manière optimale : (i) diamètre des grains de speckle équivalent à la taille des pixels de la caméra et (ii) pas des franges grand devant la taille des grains de speckle.

Nous allons pouvoir l'utiliser pour mesurer la déformation de l'objet. Chaque pixel $(x = x_P, y = y_P)$ de la caméra reçoit une intensité valant (équation 1.1 établie page 5) :

$$I_{\text{Pixel}}\left(x,y,t\right) = I_{0}\left(x,y\right)\left[1 + m\left(x,y\right)\cos\left(\varphi_{0}\left(x,y\right) + \Delta\varphi\left(x,y,t\right)\right)\right]$$

a avec $\varphi_0\left(x,y\right)$ la phase aléatoire correspondant à la diffusion de la lumière sur l'objet rugueux modulée par le terme d'interférence et $\Delta\varphi\left(x,y,t\right)$ le changement de phase dû à la déformation de l'objet, supposé varier lentement en (x,y).

Dans le cas d'une mesure de déformation, on mesure la variation de la forme de l'objet entre deux instants séparés de Δt , en comparant $I_{\text{Pixel}}\left(x,y,\Delta t\right)$ avec $I_{\text{Pixel}}\left(x,y,0\right)$ (on suppose que $\Delta \varphi\left(x,y,0\right)=0$).

2.1 Sensibilité de la phase aux déformations locales

Considérons (voir figure 1.2):

- une surface plane rugueuse (perpendiculaire à l'axe z),
- une onde plane dont le vecteur d'onde $\vec{k_i}$ est incliné par rapport à l'axe z,
- l'onde plane diffusée de vecteur d'onde \vec{k}_s .

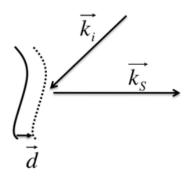


FIGURE 1.2 – Géométrie des vecteurs d'onde et de la déformation locale de l'objet.

Q18 Montrer que la variation de la phase de l'onde diffusée a pour expression $\Delta \varphi = \left(\vec{k}_i - \vec{k}_s\right) \cdot \vec{d}$, lorsque la surface subit une translation d'une quantité \vec{d} .

La sensibilité de la phase aux translations de la surface est par conséquent directement liée à la direction du vecteur déplacement \vec{d} . Lorsque les vecteurs d'onde incident et diffusé sont pratiquement normaux à la surface de l'objet, seules les déformations normales à la surface seront observées.

Q19 Est-ce le cas pour votre montage? Conclure sur la validité de l'approximation :

$$\Delta \varphi = -\frac{4\pi}{\lambda} \Delta d \tag{1.2}$$

où λ est la longueur d'onde de la source en m et Δd l'amplitude (en m) de la déformation dans direction normale à la surface observée.

2.2 Mesure de déformation par une méthode soustractive

Le traitement consiste tout simplement à soustraire l'image de l'interférogramme de référence, avant déformation, à l'image de l'interférogramme obtenue après déformation, pour calculer la grandeur :

$$\Delta I_{\text{Pixel}}(x, y) = |I_{\text{Pixel}}(x, y, \Delta t) - I_{\text{Pixel}}(x, y, 0)|$$

- Utiliser la fonction du logiciel pour acquérir une image de la céramique pour une tension nulle (image de référence) et lancer le calcul en temps réel de la différence en valeur absolue de l'image courante avec cette image de référence.
- Appliquer une tension de quelques volts aux bornes des électrodes de la céramique objet pour la déformer.

Analyse des observations L'expression de $\Delta I_{\text{Pixel}}(x,y)$ est proportionnelle à $\sin\left(\frac{\Delta\varphi(x,y,t)}{2}\right)$. Plus précisément,

$$\begin{split} \Delta I_{\text{Pixel}}\left(x,y\right) &= \left|I_{0}\left(x,y\right)\left[1+m\left(x,y\right)\cos\left(\varphi_{0}\left(x,y\right)+\Delta\varphi\left(x,y,t\right)\right)\right] \\ &-I_{0}\left(x,y\right)\left[1+m\left(x,y\right)\cos\left(\varphi_{0}\left(x,y\right)\right)\right]\right| \\ &= \left|I_{0}\left(x,y\right)m\left(x,y\right)\left[\cos\left(\varphi_{0}\left(x,y\right)+\Delta\varphi\left(x,y,t\right)\right)-\cos\left(\varphi_{0}\left(x,y\right)\right)\right]\right| \\ &= \frac{I_{0}\left(x,y\right)m\left(x,y\right)}{2}\left[\sin\left(\frac{\Delta\varphi\left(x,y,t\right)}{2}\right)\sin\left(\varphi_{0}\left(x,y\right)+\frac{\Delta\varphi\left(x,y,t\right)}{2}\right)\right] \end{split}$$

Le premier terme correspond donc à une modulation lente du contraste (des franges d'interférences... numériques) pilotée par la déformation de l'objet. Le deuxième terme contient une phase aléatoire, aux variations rapides, l'image des « franges » est donc entachée de bruit.

- **Q20** A partir de ce modèle, expliquer quelle est la déformation de la céramique à partir du résultat de la méthode soustractive. Comment en déduire l'amplitude maximale de la déformation de la céramique?
- Effectuer la mesure de l'amplitude maximale de déformation de la céramique en fonction de la tension appliquée.
- **Q21** Quel interfrange minimal doit il y avoir entre les franges de déformation pour pouvoir les distinguer? Pouvoir distinguer des franges serrées, signifie mesurer des déformations importantes, en déduire une contrainte sur la taille maximale des grains de speckle.

Au sujet du filtrage du speckle Il est possible de filtrer le speckle dans l'image des franges de déformation en utilisant un filtrage par convolution (par exemple convolution par une matrice carrée), le logiciel effectue un filtrage de ce type pour améliorer la visualisation.

Attention le speckle étant dans le cas de cette image un bruit multiplicatif, ce filtrage ne sera efficace qu'après avoir effectué une opération non linéaire (comme la valeur absolue). La taille du noyau de convolution doit être grand devant le diamètre moyen du speckle mais faible devant le pas des franges de déformation).

2.3 Étude des modes de vibrations de l'objet

Pour la mesure de vibrations, l'objet est excité de manière sinusoïdale à une fréquence ν_S , l'évolution de la phase s'écrit alors :

$$\Delta\varphi\left(x,y,t\right) = \Delta\varphi_S\left(x,y\right)\sin\left(2\pi\nu_S t\right)$$

L'amplitude $\Delta\varphi_S\left(x,y\right)$ varie avec la fréquence de la vibration pour révéler la structure spatiale du mode de vibration avec ses ventres $(\Delta\varphi_S\left(x_V,y_V\right)$ maximal) et nœuds $(\Delta\varphi_S\left(x_N,y_N\right)=0)$ de vibrations. La période de l'excitation étant en général beaucoup plus rapide que le temps de réponse de la caméra, la caméra ne résout pas cette excitation et intègre temporellement le signal pour mesurer la valeur moyenne de l'intensité reçue $\langle I_{\text{Pixel}}(x,y,t)\rangle_{\tau}$ sur le temps d'intégration τ de la caméra. On peut écrire cette intensité comme :

$$\begin{split} \langle I_{\text{Pixel}}(x,y,t) \rangle_{\tau} &= \\ I_{0}(x,y) \left[1 + m(x,y) \cos \left(\varphi_{0}(x,y) \right) \langle \cos \left(\Delta \varphi_{S}\left(x,y \right) \sin \left(2\pi \nu_{S} t \right) \right) \rangle_{\tau} \\ &- m(x,y) \sin \left(\varphi_{0}(x,y) \right) \langle \sin \left(\Delta \varphi_{S}\left(x,y \right) \sin \left(2\pi \nu_{S} t \right) \right) \rangle_{\tau} \right] \end{split}$$

que l'on peut réécrire, (car le terme $\sin{(\Delta\varphi_S\left(x,y\right)\sin{(2\pi\nu_S t)})}$ est de moyenne nulle) :

$$\langle I_{\text{Pixel}}(x, y, t) \rangle_{\tau} = I_0(x, y) \left[1 + m(x, y) J_0 \left(\Delta \varphi_S(x, y) \right) \cos \left(\varphi_0(x, y) \right) \right]$$

avec $J_0(\varphi)$ la fonction de Bessel d'ordre 0.

Sur les nœuds de vibrations la fonction $J_0(\varphi)$ est maximale et vaut 1 ce qui signifie que la structure de speckle garde un contraste maximal, tandis que sur les ventres de vibrations $J_0(\varphi)$ tend vers 0 ce qui se traduit par un brouillage de la figure d'interférence et une diminution du contraste de la figure de speckle.

Le logiciel réalise la différence entre deux images successives en appliquant un déphasage supplémentaire de π entre les deux faisceaux entre chaque acquisition (grâce au miroir monté sur une cale piézo-électrique dans le bras de référence).

- **Q22** Déduire de la description de cette méthode donnée dans l'annexe, quelle est l'amélioration du contraste attendue par rapport à la méthode soustractive simple.
- Vous pouvez obtenir de très belles figures de mode de vibration de la céramique en l'alimentant avec un GBF.
- Q23 Analyser les images obtenues, comment évolue le contraste des franges?

3 Pour aller plus loin : algorithmes de décalage de phase

Les mesures précédentes étaient essentiellement qualitatives. Elles ne permettaient pas une mesure directe de la variation de phase induite par la déformation ou la vibration de l'objet. Pour extraire $\Delta \varphi \left(x,y,t\right)$, il faut coupler le système DSPI avec une technique de mesure de type « décalage de phase » (comme la technique « phase shift » du Zygo).

3.1 Principe du décalage de phase

Le principe du décalage de phase (ou *phase-shift*) est d'acquérir une série de quelques interférogrammes, régulièrement espacés en déphasage, de l'objet étudié. A partir de ces interférogrammes, on peut retrouver la phase de l'onde diffusée par l'objet.

La méthode utilisée ici est celle utilisant 5 interférogrammes : c'est l'algorithme de Hariharan 1 . En premier lieu, 5 interférogrammes notés I_1 à I_5 sont enregistrés en faisant varier la phase entre chacun d'eux. Ensuite la phase du front d'onde sera calculée pour chaque pixel.

Pour obtenir une expression simple de la phase en fonction des 5 interférogrammes, il faut que les interférogrammes soient décalés de $\frac{\pi}{2}$. L'expression de la phase s'obtient alors par :

$$\varphi_{PS} = \arctan\left(\frac{2\left(I_2 - I_4\right)}{2I_3 - I_5 - I_1}\right)$$

On obtient donc avant déformation $\varphi_{PS}(x,y)=\varphi_0(x,y)$ et après déformation $\varphi_{PS}(x,y)=\varphi_0(x,y)+\Delta\varphi_S(x,y)$, la différence entre les deux mesures permet d'éliminer la figure de speckle si celle-ci n'a pas été modifiée entre les deux mesures.

La démonstration de ce résultat est obtenu à partir de l'écriture des 5 images (l'écriture a été allégée) :

$$I_{1} = I_{0} (1 + m \cos (\varphi_{0} + \Delta \varphi_{S}))$$

$$I_{2} = I_{0} (1 - m \sin (\varphi_{0} + \Delta \varphi_{S}))$$

$$I_{3} = I_{0} (1 - m \cos (\varphi_{0} + \Delta \varphi_{S}))$$

$$I_{4} = I_{0} (1 + m \sin (\varphi_{0} + \Delta \varphi_{S}))$$

$$I_{5} = I_{0} (1 + m \cos (\varphi_{0} + \Delta \varphi_{S}))$$

et finalement:

$$\varphi_{\text{PS}} = \arctan\left(\frac{2\left(I_2 - I_4\right)}{2I_3 - I_5 - I_1}\right) = \arctan\left(\frac{2\left(-2m(\sin\left(\varphi_0 + \Delta\varphi_S\right)\right)\right)}{2\left(-2m(\cos\left(\varphi_0 + (\Delta\varphi_S\right)\right)\right)}\right) = \arctan\left(\frac{\sin\left(\varphi_0 + \Delta\varphi_S\right)}{\cos\left(\varphi_0 + \Delta\varphi_S\right)}\right)$$

3.2 Application à la mesure de déformation

 \leadsto Appliquer l'algorithme de phase shift pour déterminer la phase de l'onde objet avant et après déformation. La différence entre ces deux mesures permet d'obtenir $\Delta \varphi(x,y)$, image de l'amplitude des déformations Δd en s'affranchissant du speckle.

^{1.} P. Hariharan, B. Oreb, and T. Eiju, "Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm," Appl. Opt. 26, 2504-2506 (1987).

Q24 Analyser les résultats obtenus et comparer avec la méthode de différence d'images utilisée au paragraphe 2.2.

3.3 Application à la mesure d'amplitude de vibration

Cette même technique de décalage de phase permet d'obtenir une visualisation des modes de vibration de façon très contrastée, on parle de franges quasi-binaires.

Appliquer l'algorithme de phase-shift et déterminer la phase de l'onde objet sans et avec les vibrations.

La différence entre les deux mesures précédentes permet de remonter à l'amplitude des vibrations. Le pas des franges est lié aux annulations de la fonction $J_0(\varphi)$, dont les premières valeurs sont données sur la figure 1.5.

Annexe : Mesure d'amplitude de vibrations par interférométrie de speckle

On exprime l'intensité mesurée par la caméra selon :

$$\langle I_{\text{Pixel}}(x, y, t) \rangle_{\tau} = I_0(x, y) \left[1 + m(x, y) J_0 \left(\Delta \varphi_S(x, y) \right) \cos \left(\varphi_0(x, y) \right) \right]$$

pour une variation locale de l'onde objet :

$$\Delta\varphi\left(x,y,t\right) = \Delta\varphi_S\left(x,y\right)\sin\left(2\pi\nu_S t\right)$$

 ν_S est la fréquence des vibrations. φ_0 est une grandeur constante dans chaque grain de speckle. m est le facteur de modulation des interférences entre l'onde de référence et l'onde objet.

Les méthodes présentées au paragraphes 2.3 et 3.3 permettent de remonter à l'amplitude des vibrations $\Delta \varphi_S(x,y)$.

Pourquoi ajouter un déphasage de π dans la différence d'image?

Lors d'une mise en vibration d'un objet, les zones correspondant à des noeuds de vibration ne vibrent pas, une différence entre l'image acquise et une image de référence au repos ferait donc apparaître les nœuds de vibrations en noir (comme les parties non déformées dans la mesure des déformations). Plus précisément, la différence s'écrit :

$$\Delta I_{\mathrm{Pixel}}(x,y,t) = \left| \left\langle I_{\mathrm{Pixel}}(x,y,t) \right\rangle_{\tau} - I_{\mathrm{Pixel}}\left(x,y,0\right) \right|$$

soit

$$\Delta I_{\text{Pixel}}(x,y,t) = \left|I_{0}\left(x,y\right)\left[1+m\left(x,y\right)J_{0}\left(\Delta\varphi_{S}\left(x,y\right)\right)\cos\left(\varphi_{0}\left(x,y\right)\right)\right] - I_{0}\left(x,y\right)\left[1+m\left(x,y\right)\cos\left(\varphi_{0}\left(x,y\right)\right)\right]\right|$$

et finalement:

$$\Delta I_{\text{Pixel}}(x, y, t) = I_0(x, y) m(x, y) |[J_0(\Delta \varphi_S(x, y)) - 1] \cos(\varphi_0(x, y))|$$

Pour $\Delta \varphi_S(x,y) = 0$, c'est à dire des nœuds de vibrations, on retrouve l'expression obtenue pour des déformations nulles, c'est à dire une frange noire car $J_0(0) = 1$. De faibles modulations du contraste traduisent les différentes amplitudes de vibrations selon la courbe de la fonction $1 - J_0(x)$, tracée sur la figure 1.3.

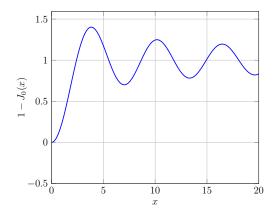


FIGURE 1.3 – Allure de la fonction $1 - J_0(x)$

Le contraste de ces franges est très faible, et décroit rapidement. Une astuce pour avoir un contraste amélioré et de faire la différence entre deux images successives, en ajoutant pour la deuxième image un déphasage de Φ . C'est en fait un premier algorithme de décalage de phase, à deux images seulement.

Méthode de la différence de deux images successives avec déphasage supplémentaire de Φ On considère donc deux images décalées dans le temps, les intensités des figures d'interférence sont notées

$$\langle I_{\text{Pixel}}(x, y, t_1) \rangle_{\tau}$$
 et $\langle I_{\text{Pixel}}(x, y, t_2) \rangle_{\tau}$

où:

$$\langle I_{\mathrm{Pixel}}(x,y,t_{1})\rangle_{\tau} = I_{0}(x,y)\left[1 + m(x,y)J_{0}\left(\Delta\varphi_{S}\left(x,y\right)\right)\cos\left(\varphi_{0}\left(x,y\right)\right)\right]$$

et

$$\langle I_{\text{Pixel}}(x, y, t_2) \rangle_{\tau} = I_0(x, y) \left[1 + m(x, y) J_0 \left(\Delta \varphi_S(x, y) + \Phi \right) \cos \left(\varphi_0(x, y) \right) \right]$$

On peut montrer que la différence en valeur absolue entre ces deux images possède un contraste maximal dans le cas où $\Phi=\pi$.

Le tracé de la courbe de la fonction $f(\phi, \Phi) = J_0(\phi) - J_0(\phi + \Phi)$ pour quelques valeurs de Φ est donné sur la figure 1.4.

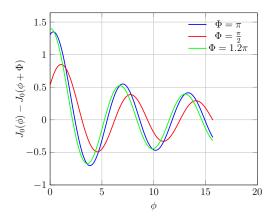
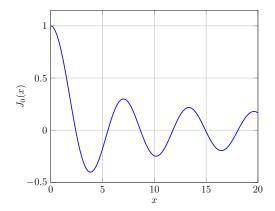


FIGURE 1.4 – Tracé de la fonction $f(\phi,\Phi)=J_0(\phi)-J_0(\phi+\Phi)$ pour quelques valeurs de Φ . Un contraste maximal de $|f(\phi,\Phi)|$ est obtenu pour $\Phi=\pi$ ou des valeurs proches

Les zéros de la fonction $f(\phi, \pi)$ sont identiques aux zéros de la fonction de Bessel, et sont espacés de π . On peut remonter à l'amplitude des vibrations en comptant les franges noires selon le tableau de la figure 1.5.



$$\begin{array}{cccc} k & x_k, J_0(x_k) = 0 & \frac{\Delta d}{\lambda} = \frac{x_k}{4\pi} \\ 1 & 2,40 & 0,19 \\ 2 & 5,52 & 0,44 \\ 3 & 8,65 & 0,69 \\ 4 & 11,79 & 0,94 \\ 5 & 14,93 & 1,19 \end{array}$$

FIGURE 1.5 – Allure de de la fonction de Bessel d'ordre 0 $J_0(x)$ et tableau des premiers zéros avec la correspondance en amplitude de vibration, en fraction de la longueur d'onde. Lecture : la première frange noire correspond à une amplitude de $0,19\times\lambda=0,19\times633\,\mathrm{nm}=121\,\mathrm{nm}$

Pourquoi obtient-on des franges quasi-binaires dans le cas de l'algorithme à décalage de phase?

Les cinq images obtenues lorsque l'objet vibre ont une expression contenant une fonction de Bessel et on peut montrer que le résultat de l'algorithme de décalage de phase peut s'écrire :

$$\varphi_{PS} = \arctan\left(\frac{J_0(\Delta\varphi_S)\sin(\varphi_0)}{J_0(\Delta\varphi_S)\cos(\varphi_0)}\right)$$

Et donc:

$$\begin{array}{llll} \mathrm{Si} \; J_0(\Delta \varphi_S) > 0 & & \varphi_{\mathrm{PS}} & = \; \varphi_0 \\ \mathrm{Si} \; J_0(\Delta \varphi_S) < 0 & & \varphi_{\mathrm{PS}} & = \; \varphi_0 + \pi \end{array}$$

Et en faisant la différence entre la phase calculée avec vibration et celle sans vibration, on obtient soit 0 soit π , toujours sous la condition que le champ de speckle n'ait pas été modifié, ce qui abouti donc à des franges binaires.

La démonstration de ce résultat repose sur l'écriture des 5 images :

$$I_{1} = I_{0}(1 + mJ_{0}(\Delta\varphi_{S})\cos(\varphi_{0}))$$

$$I_{2} = I_{0}(1 - mJ_{0}(\Delta\varphi_{S})\sin(\varphi_{0}))$$

$$I_{3} = I_{0}(1 - mJ_{0}(\Delta\varphi_{S})\cos(\varphi_{0}))$$

$$I_{4} = I_{0}(1 + mJ_{0}(\Delta\varphi_{S})\sin(\varphi_{0}))$$

$$I_{5} = I_{0}(1 + mJ_{0}(\Delta\varphi_{S})\cos(\varphi_{0}))$$

et

$$\varphi_{PS} = \arctan\left(\frac{2\left(I_2 - I_4\right)}{2I_3 - I_5 - I_1}\right) = \arctan\left(\frac{2\left(-2mJ_0(\Delta\varphi_S)\sin\left(\varphi_0\right)\right)}{2\left(-2mJ_0(\Delta\varphi_S)\cos\left(\varphi_0\right)\right)}\right) = \arctan\left(\frac{J_0(\Delta\varphi_S)\sin\left(\varphi_0\right)}{J_0(\Delta\varphi_S)\cos\left(\varphi_0\right)}\right)$$

C 2

Sonde homodyne & Sonde hétérodyne

Version du 11 septembre 2025

Pour vous préparer en amont de la séance : répondre aux questions P1 à P10.

Objectifs pédagogiques. À l'issue de la séance, vous serez capables :

- d'aligner un interféromètre de Michelson avec une source laser collimatée et de le régler en teinte plate pour détecter la modulation de phase portée par un faisceau,
- de caractériser et d'analyser les performances d'une sonde homodyne ou hétérodyne à l'aide d'un modèle théorique d'interféromètre à deux ondes,
- de mettre en œuvre des instruments de mesure de signaux périodiques rapides (analyseur de spectre électrique, oscilloscope) pour les mesures des signaux hétérodynes et de comparer leurs performances à des systèmes de traitement du signal dédiés.

Sommaire

1 Introduction		luction					
2	Sonde	e homodyne					
	2.1	Préparation du TP					
	2.2	Partie expérimentale					
3	Sonde	e hétérodyne					
	3.1	Analyse du système					
	3.2	Réglage de la cible vibrante					
	3.3	Étude à l'analyseur de spectre du signal brut					
	3.4	Étude après traitement électronique de démodulation 28					
	3.5	Mesure sur cible diffusante					

1 Introduction

L'étude des ondes sonores et ultrasonores constitue un domaine particulièrement important de la métrologie et du contrôle non destructif. Tous les objets soumis à excitation, qu'elle soit interne comme dans un moteur, ou externe comme dans le cas d'une excitation ultrasonore avec un transducteur piézo-électrique, vibrent avec un spectre qui est caractéristique de l'objet.

Un défaut de l'objet modifiera ce spectre, ainsi par exemple une assiette ébréchée émet un bruit différent lorsqu'on la cogne. Une étude sonore à l'aide d'un micro peut donc nous donner un renseignement important sur l'intégrité physique d'un objet (bruit anormal dans un moteur, ou fausse note d'un instrument de musique). Toutefois pour être plus précise, cette étude globale de l'émission sonore d'un objet (due à la vibration de l'ensemble de l'objet) devra la plupart du temps être complétée par une étude plus particulière de la vibration d'un certain nombre de points de la surface de l'objet, afin d'identifier l'endroit particulier qui est défectueux. Cette étude peut être effectuée en posant des capteurs de vibrations (comme des accéléromètres) sur la surface même de l'objet. Mais cela suppose que le capteur de vibration ne perturbe pas le comportement vibratoire de l'objet, et d'autre part que le nombre de points d'étude soit limité et surtout que ces points de mesure soient accessibles.

Pour tous les cas où il est impossible d'utiliser un capteur mécanique de vibration, l'optique offre une alternative intéressante, car elle permet de réaliser une mesure rapide sans contact, à distance de la vibration d'un objet. Le principe de la vibrométrie laser est le suivant : on envoie un faisceau laser sur le point de l'objet dont on veut mesurer la vibration d'amplitude $\delta(t)$. Le faisceau réfléchi est alors modulé en phase, avec une amplitude de modulation de phase proportionnelle à la vibration et égale à $\Delta \varphi(t) = 4\pi \delta(t)/\lambda$, où λ est la longueur d'onde utilisée. Tout le problème devient alors de transformer cette modulation de phase inexploitable directement en une modulation d'intensité du faisceau que l'on pourra mesurer avec un détecteur. Cette transformation est effectuée avec un interféromètre dans lequel on fait interférer l'onde modulée en phase avec une onde de référence.

Le but de ce TP est d'étudier deux dispositifs interférométriques de mesure de vibrations. Dans la sonde homodyne, l'onde de référence est à la même fréquence que l'onde signal, tandis que dans la sonde hétérodyne les deux ondes ont des fréquences différentes (en fait une différence de fréquences fixe). Les montages étudiés sont particulièrement adaptés à l'étude des ondes ultrasonores pour lesquelles on cherche à mesurer des vibrations de très faible amplitude (typiquement de l'ordre du nanomètre ou du dixième de nanomètre) et de fréquence élevée (quelques centaines de kHz voire plusieurs MHz).

2. SONDE HOMODYNE 21

2 Sonde homodyne

La sonde homodyne est ici un interféromètre de type Michelson dont les miroirs ont été montés sur des cales piézo-électriques (Fig. 2.1).

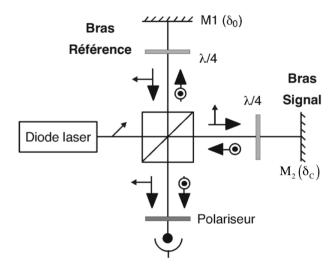


FIGURE 2.1 – Schéma expérimental pour la détection homodyne

La cale piézo-électrique du miroir M1 est alimentée en continu ce qui permet de régler finement la différence de marche entre les faisceaux. De son coté, celle du miroir M2 est alimentée en régime sinusoïdal et sert à simuler l'objet à mesurer.

La source est une diode laser rouge émettant $3\,\mathrm{mW}$ à $670\,\mathrm{nm}$. Un cube séparateur de polarisation transmet la composante horizontale de la polarisation du faisceau issu de la diode (i.e. dans le plan de la figure) et réfléchit la composante verticale.

Le plan de jonction de la diode, qui définit aussi la direction de la polarisation, est orienté à 45° afin d'égaliser l'intensité sur les deux voies de l'interféromètre. Sur chacune des deux voies, la polarisation est tournée de 90° grâce à un double passage dans une lame quart d'onde. Ainsi, le faisceau qui avait été transmis lors du premier passage dans le cube est maintenant réfléchi. Inversement, le faisceau qui avait été réfléchi est maintenant transmis. Un polariseur permet de faire interférer sur une photodiode les deux faisceaux de polarisation orthogonale.

2.1 Préparation du TP

La sonde homodyne correspond du point de vue optique à un montage d'interférence à deux ondes entre un faisceau signal d'amplitude E_S (de fréquence f_S) et d'intensité I_S et un faisceau de référence d'amplitude E_R (et de même fréquence $f_R = f_S$) et d'intensité I_R .

On note $\Delta \varphi(t)$ le déphasage entre les deux ondes signal et référence :

$$\Delta\varphi(t) = \frac{4\pi}{\lambda} \left(\delta_0 + \delta_C \sin\left(2\pi\nu_C t\right)\right)$$

où δ_0 est le déplacement du miroir M1 (il permet d'ajuster l'état d'interférence au niveau du détecteur), tandis que δ_C est l'amplitude de la vibration de la cible, i.e. du miroir M2, modulé à la fréquence ν_C , que l'on cherche à mesurer.

- P1 En supposant le montage parfait et parfaitement aligné, établir l'expression théorique de l'intensité reçue $I_{\text{reçu}}$ par le détecteur, en fonction des intensités I_S et I_R des faisceaux signal et référence et du déphasage $\Delta \varphi$ (on supposera pour ce calcul que l'on a des ondes planes parfaitement superposées).
- **P2** On suppose que le déplacement du miroir que l'on cherche à mesurer est de très faible amplitude ($\delta_C \ll \lambda$). Développer l'expression de l'intensité reçue pour faire apparaître directement les termes proportionnels à δ_C et δ_C^2 . À quelle fréquence de signal détecté ces différents termes correspondent-ils?

Choix du point de fonctionnement

L'intensité reçue par le détecteur se compose de plusieurs termes correspondant à des signaux que l'on cherche à mesurer ou utiles pour optimiser le montage et le caractériser.

On définit I_{Max} et I_{Min} les intensités des franges brillantes et sombres (mesurées en faisant varier δ_0 sans signal appliqué, i.e. avec $\delta_C=0$).

La modulation des franges d'interférence est alors définie par :

$$m = \frac{(I_{\text{Max}} - I_{\text{Min}})}{(I_{\text{Max}} + I_{\text{Min}})}$$

et l'intensité moyenne s'écrit

$$I_0 = I_R + I_S = \frac{\left(I_{\mathsf{Max}} + I_{\mathsf{Min}}\right)}{2}$$

P3 Montrer que l'on peut écrire l'intensité reçue par le détecteur sous la forme :

$$I_{\rm reçu} = I_0 \left(1 + m \cos \Delta \varphi(t) \right)$$

Comment choisir I_R et I_S pour maximiser m?

P4 Quelles sont les caractéristiques du signal détecté à la sortie du détecteur pour $\delta_0 = 0$, $\frac{\lambda}{8}$ et $\frac{\lambda}{4}$? En déduire la valeur de δ_0 qui optimise la partie du signal détecté oscillant à la fréquence

Ce régime de fonctionnement optimal revient à « mettre en quadrature » la référence et le signal, expliquez l'origine de ce terme. Écrire alors l'expression de l'amplitude du signal détecté à la fréquence ν_C en la reliant à la modulation des franges d'interférence m et à l'intensité moyenne I_0 .

- **P5** En vous appuyant sur la courbe de $I_{\text{reçu}}$ en fonction de δ_0 faire un schéma expliquant la réponse du système à une vibration de faible amplitude.
- **P6** Que se passe-t-il si l'amplitude δ_C de la vibration augmente et la condition $\delta_C \ll \lambda$ n'est plus respectée?

2. SONDE HOMODYNE 23

Conditions de bon fonctionnement du montage

Les expressions précédentes sont écrites dans le cas où le montage d'interférence à deux ondes est parfaitement réglé. Cela signifie que le montage est réglé en teinte plate, ce qui impose une contrainte d'alignement sur l'orientation du miroir M1 par rapport à M2.

- **P7** Pourquoi doit-on se régler en teinte plate? Imaginer la procédure de réglage permettant d'atteindre cette teinte plate.
- **P8** Lorsque les deux miroirs font entre eux un angle α , on observe des franges dans le plan du détecteur. Écrire l'expression de leur interfrange en fonction de α .
- **P9** Quel doit être le pas minimal des franges d'égale épaisseur pour avoir une teinte plate sur le détecteur de diamètre d? En déduire l'angle maximal que l'on peut accepter entre les deux miroirs pour un détecteur de diamètre $d=1\,\mathrm{mm}$.
- P10 Voyez-vous d'autres points importants au bon fonctionnement de ce système?

2.2 Partie expérimentale

Aligner et régler correctement les éléments du montage (miroirs, lame quart-d'onde, polariseur, photodiode) pour observer les franges avec un bon contraste. Obtenir ensuite la teinte plate. Il n'est pas nécessaire d'alimenter la cale piézo du miroir M2 pour le faire vibrer.

Calibration du système

Un des intérêts des systèmes de mesure optique de vibrations est la possibilité de connaître de manière absolue l'amplitude de la vibration mesurée, en utilisant la référence de longueur qu'est λ . La calibration consiste donc à relier l'amplitude du signal mesuré, $V_C \sin{(2\pi\nu_C t)}$, à l'amplitude de déplacement, $\delta_C \sin{(2\pi~\nu_C~t)}$, qui a créé ce signal. Le facteur de calibration, donné par le rapport $K_C = \frac{\delta_C}{V_C}$ s'exprime en général en nm/mV.

- Q1 La facteur de calibration ne dépend que des caractéristiques du système de franges d'interférence. À partir des formules théoriques précédentes donner l'expression du signal détecté V_C à la fréquence d'excitation ν_C en fonction de δ_C (en fonction de δ_0 , m et I_0). Que vaut-il pour le déphasage δ_0 optimal?
- \longrightarrow Mesurer la modulation des franges m et l'intensité moyenne I_0 .
- **Q2** En déduire la calibration K_C de la détection homodyne en nm/mV.

Mesure d'une amplitude de vibration

On alimente maintenant le miroir M2 avec le GBF avec une tension sinusoïdale de fréquence aux alentours de $\nu_C=120\,\mathrm{kHz}$, et d'amplitude $1\,\mathrm{V}$ (soit $2\,\mathrm{V}$ crête à crête). Le détecteur possède une bande passante de $7\,\mathrm{MHz}$. Il est branché sur un filtre passe-haut de fréquence de coupure $7\,\mathrm{kHz}$. Ce filtre dispose de deux sorties : une sortie filtrée (AC) et une sortie non filtrée (AC+DC) permettant de mesurer la valeur du signal continu en même temps que le signal filtré.

- **Q3** Expliquer l'intérêt de disposer de ces deux sorties.
- \leadsto Mesurer l'amplitude δ_C de déplacement du miroir M2, en utilisant le facteur de calibration K_C précédent.

Déplacement minimum détectable

La qualité ultime des dispositifs de mesure de vibrations est donnée par leur capacité à mesurer des très faibles déplacements. Cette mesure sera donnée par la sensibilité S, définie comme le déplacement minimum donnant un rapport signal sur bruit de 1 (soit $0 \, \mathrm{dB}$), pour une bande passante d'analyse du système de détection B (qui déterminera le bruit de la mesure) normalisée à $1 \, \mathrm{Hz}$:

$$S = \frac{\delta_{C\min}}{\sqrt{B}}$$

Cette sensibilité est en général exprimée en $\frac{nm}{\sqrt{Hz}}$. Elle permet de comparer facilement divers systèmes fonctionnant avec des bandes passantes de mesure différentes.

- Q4 Déterminer la plus petite valeur de δ_C (amplitude minimum détectable $\delta_{C \min}$) mesurable expérimentalement (et sans moyenner le signal) à la fréquence de $120\,\mathrm{kHz}$. Comparer les valeurs obtenues sur la sortie filtrée (AC) et sur la sortie non filtrée (AC+DC).
- **Q5** En déduire la sensibilité de votre montage, compte tenu de la bande passante de votre détection. Pourquoi normalise-t-on à la racine de cette bande passante ?

Lorsque le bruit limitant la mesure est le bruit de photon, on peut montrer que la sensibilité théorique de la sonde pour une puissance optique P (en watt) d'un faisceau de longueur d'onde λ (correspondant à des photons d'énergie $h\nu$) sur le détecteur d'efficacité quantique $\eta=90\%$ s'exprime comme suit :

$$S_{\rm BPh} = \frac{\lambda}{4\pi} \sqrt{\frac{h\nu}{\eta P}}$$

Q6 Calculer la sensibilité théorique de votre montage et comparez à votre mesure. Qu'en concluez-vous sur l'origine du bruit limitant votre mesure.

25

Q7 Avec les moyens disponibles du TP, quelle solution proposez-vous pour améliorer la sensibilité expérimentale, i.e. diminuer S, d'un facteur 10 (en la quantifiant)?

Question subsidiaire : Le principe de la détection homodyne est utilisé dans les systèmes de détection des ondes gravitationnelles (dans une version largement améliorée et optimisée). Dans ces dispositifs on ne mesure pas la vibration du miroir mais la déformation h(t) des bras de l'interféromètre sous l'effet du passage de l'onde gravitationnelle, cette déformation induit un changement de la longueur du bras $\Delta L(t) = h(t)L$. Si on suppose que la sensibilité ultime de l'interféromètre est donnée par S_{BPh} , calculer cette sensibilité S_{BPh} pour un interféromètre de type LIGO/VIRGO utilisant une longueur d'onde de $1,06\,\mu\mathrm{m}$ avec une puissance laser de $10\,\mathrm{W}$ et une efficacité quantique de 90%. Quelle longueur L du bras de l'interféromètre faut il prendre pour pouvoir détecter le passage d'une onde gravitationnelle induisant une déformation $h(t) = 10^{-23} \left(\frac{1}{\sqrt{Hz}}\right)$. Comment procède-t-on pour atteindre en pratique cette longueur?

3 Sonde hétérodyne

La principale limitation de la détection homodyne est son extrême sensibilité aux bruits basses fréquences, qui viennent souvent s'ajouter au signal à mesurer. Le fonctionnement de la sonde homodyne nécessite la plupart du temps un asservissement qui stabilise de manière active le montage au point de fonctionnement optimal. Cet asservissement complique le montage, ce qui fait qu'en pratique on préfère à la détection homodyne un montage dérivé, la détection hétérodyne, dans laquelle les deux faisceaux qui interfèrent sont à des fréquences différentes, et présentent une différence de fréquence fixe.

3.1 Analyse du système

Les deux faisceaux interférant dans l'interféromètre sont issus d'un même laser HeNe ($\lambda=633\,\mathrm{nm}$) et sont décalés en fréquence l'un par rapport à l'autre d'une fréquence $f_B\approx70\,\mathrm{MHz}$, à l'aide d'une cellule acousto-optique.

Q8 Montrer que ce décalage en fréquence induit une variation de phase linéaire temporellement ce qui revient à remplacer, dans l'expression établie précédemment pour la détection homodyne, la différence de phase entre les deux faisceaux, δ_0 par $\frac{\lambda f_B t}{2}$.

Si les deux faisceaux interfèrent en teinte plate au niveau du détecteur, le photo-courant mesuré sera modulé sinusoïdalement autour de la fréquence f_B (la composante continue du signal étant coupée par l'électronique de détection, elle n'est pas considérée ici) :

$$i_{\mathrm{HF}}(t) = k \cos \left(2\pi f_B t + \frac{4\pi}{\lambda} \delta_C \sin \left(2\pi \nu_C t \right) \right)$$

On peut développer le signal en série de Fourier :

$$i_{\mathrm{HF}}\left(t\right) = \\ k\mathrm{Re}\left[\mathrm{e}^{2i\pi f_{B}t}\left(J_{0}\left(\frac{4\pi\delta_{C}}{\lambda}\right) + 2i\;J_{1}\left(\frac{4\pi\delta_{C}}{\lambda}\right)\sin\left(2\pi\nu_{C}t\right) + 2\;J_{2}\left(\frac{4\pi\delta_{C}}{\lambda}\right)\sin\left(4\pi\nu_{C}t\right)\right)\right]$$

Ce qui donne en final en se restreignant aux premiers ordres :

$$i_{\text{HF}}(t) = k \left[J_0 \left(\frac{4\pi \delta_C}{\lambda} \right) \cos \left(2\pi f_B t \right) + J_1 \left(\frac{4\pi \delta_C}{\lambda} \right) \left(\cos \left(2\pi \left(f_B - \nu_C \right) t \right) - \cos \left(2\pi \left(f_B + \nu_C \right) t \right) \right) \right]$$

Le signal de déplacement porté par le faisceau signal se retrouvera comme des bandes latérales de part et d'autre de la fréquence de battement (ou "fréquence d'hétérodynage") dans le spectre du photo-courant. Les hauteurs des différents pics sont données par les fonctions de Bessel d'ordre n avec comme argument la quantité $\frac{4\pi\delta_C}{\lambda}$ (Fig. 2.2). Un montage électronique traite le photo-courant pour en extraire le signal de déplacement et le rendre utilisable.

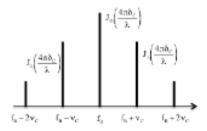


FIGURE 2.2 – Spectre du photocourant

Lorsque le déplacement δ_C est très petit devant la longueur d'onde, on a :

$$\frac{J_1\left(\frac{4\pi\delta_C}{\lambda}\right)}{J_0\left(\frac{4\pi\delta_C}{\lambda}\right)} \cong \frac{2\pi\delta_C}{\lambda}$$

Q9 Quelle est alors l'atténuation en dB entre la puissance du battement (pic central) et la puissance du signal (pic latéral) pour un déplacement de 1 nm?

Une analyse plus détaillée du principe de fonctionnement de la sonde hétérodyne est donnée dans la documentation BMI que l'on trouvera dans la salle de TP.

Remarque : l'axe optique de la lentille de focalisation sur l'échantillon vibrant est parallèle au faisceau mais non confondu avec lui. L'intérêt d'un tel désalignement permet d'éviter un retour dans le laser qui perturberait son fonctionnement.

3.2 Réglage de la cible vibrante

L'échantillon n'est pas le miroir M2 utilisé dans la première partie (ses caractéristiques, en particulier ses fréquences de résonance, seront donc différentes). Pour le réglage, il n'est pas nécessaire d'alimenter la cale piézo-électrique.

- Mettre l'interrupteur de commande sur "Manuel", placer le gain du préamplificateur à 30 et tourner le potentiomètre sur la position zéro.
- En réglant le miroir M2 pour superposer le faisceau signal avec la référence et en prenant soin de bien envoyer ces faisceaux sur le détecteur, optimiser le signal de battement entre les deux ondes sur la photodiode (utiliser la sortie H.F. sur le boîtier de la sonde hétérodyne, branchée sur l'oscilloscope afin de mesurer le signal sinusoïdal du battement à $70\,\mathrm{MHz}$) en réduisant progressivement le gain du préamplificateur jusqu'à 0.
- Si l'échantillon est bien réglé, le contrôle automatique de gain doit fonctionner en basculant l'interrupteur sur "Automatique" (LED rouge allumée).

3.3 Étude à l'analyseur de spectre du signal brut

- \sim On alimente le miroir M2 avec un signal de fréquence $\nu_C=200\,\mathrm{kHz}$, et d'amplitude $1\,\mathrm{V}$ (soit $2\,\mathrm{V}$ crête à crête), et la sortie HF est maintenant branchée sur l'analyseur de spectre électrique.
- **Q10** Compte tenu des caractéristiques du spectre attendu pour le signal électrique délivré par la voie HF (Fig. 2.2), quel réglage devez-vous prendre pour :
 - la fréquence centrale de l'affichage Freq?
 - la gamme spectrale de mesure Span?
- \sim Régler la valeur de la bande passante de résolution RBW à $1\,\mathrm{kHz}$ (ou $300\,\mathrm{Hz}$) avec la bande passante vidéo VBW en mode automatique VBW auto, et pour l'amplitude Ampt le mode automatique Auto Range.
- Mesurer δ_C à l'analyseur de spectre électrique à partir du signal brut donné par la photodiode en utilisant la sortie H.F. de la sonde. Pour cela vous pourrez utiliser les marqueurs avec les fonctions Mkr pour les afficher et Mkr pour les positionner sur les pics. Les indications de mesures des pics latéraux sont, soit en absolu (symbole mi) soit en relatif (symbole di) par rapport au pic central (le pic 1), mode sélectionnable avec la fonction Marker type.
- Déterminer la valeur expérimentale de l'amplitude minimale de vibration détectable.
- → Quelle est la bande passante de mesure de ce nouveau montage?

Q11 En déduire la sensibilité S_{AS} de la sonde hétérodyne pour le signal brut obtenu directement en sortie du détecteur et analysé sur l'analyseur de spectre.

3.4 Étude après traitement électronique de démodulation

L'analyseur de spectre, de par son principe de mesure, permet de mesurer de manière absolue l'amplitude du déplacement mais ne permet de mesurer que des signaux périodiques répétables sur des temps de mesure relativement longs. Comme la plupart du temps les signaux ultrasonores sont des séries d'échos non périodiques ou des signaux uniques non répétables, l'analyseur de spectre n'est pas utilisable pour ces mesures. Il faut donc traiter le signal issu du détecteur pour le rendre exploitable. Ce dispositif électronique de traitement du signal restituera un signal proportionnel au déplacement de l'objet ($\delta_C(t) \ll \lambda$). Ce signal après traitement électronique est disponible sur la sortie B.F. du boîtier de contrôle. Le principe de fonctionnement de la démodulation est disponible dans la documentation BMI de la sonde hétérodyne.

- Alimenter la cale piézo-électrique de M2 par signal sinusoïdal de fréquence supérieure à 200 kHz.
- \leadsto Utiliser simultanément la sortie B.F. de la sonde sur l'oscilloscope et la sortie HF sur l'analyseur de spectre pour faire correspondre l'amplitude en tension observée à l'oscilloscope avec l'amplitude de vibration $\delta_C(t)$ de la cale mesurée selon la technique du paragraphe 3.3.
- **Q12** Donner les résultats de cette calibration en nm/mV.
- → Vérifier la calibration pour quelques fréquences entre 200 kHz et 4 MHz.
- Mesurer le déplacement minimum détectable et la sensibilité sachant que la bande passante de mesure du système de traitement s'étend de 200 kHz à 4 MHz.
- **Q13** Comparer les sensibilités obtenues par les différentes méthodes (sonde homodyne; signal brut de la sonde hétérodyne sur l'analyseur de spectre; sonde hétérodyne après traitement électronique de démodulation).

3.5 Mesure sur cible diffusante

- → Mettre avec délicatesse un bout de scotch sur le miroir pour rendre la cible diffusante.
- → Faire la mesure sur la partie diffusante.
- Q14 Commenter les résultats obtenus.

C 3

Synthèse et réalisation d'éléments optiques diffractifs simples (DOEs)

Version du 11 septembre 2025

Pour vous préparer en amont de la séance : répondre aux questions P1 à P7.

Objectifs pédagogiques. À l'issue de la séance, vous serez capables :

- de calculer et de réaliser des masques d'intensité à l'aide d'une simple imprimante et régler un montage d'analyse de leurs figures de diffraction,
- d'expliquer et de mettre en oeuvre des méthodes de contrôle de la phase d'un faisceau à l'aide d'un masque d'intensité formé de pixels composites,
- de calculer et de réaliser des masques de transmission permettant de simuler les aberrations d'un objectif et des hologrammes d'une image choisie,
- d'analyser les applications possibles de ces techniques.

Sommaire

Introduction					
1	Prépar	ation à faire avant le TP			
2	Correct	tion d'une aberration			
	2.1	Principe de la correction du front d'onde aberrant			
	2.2	Mise en œuvre			
3	DOE of	otenu par codage de Lohmann			
	3.1	Calcul de la TFD 2D			
	3.2	Ajout d'une phase aléatoire sur l'objet			
	3.3	Principe du codage de Lohmann			
	3.4	Restitution optique de l'image			
4	Codage	e de la partie réelle de la Transformée de Fourier de l'objet 37			
5	Analys	e d'un DOE en phase			

30 *C 3. DOES*

Introduction

Le développement rapide des techniques de photolithographie autorise aujourd'hui la fabrication de masques de phase de plus en plus précis et complexes. Ces masques de phase (en anglais *DOE* : *Diffractive Optical Elements*) permettent, en modifiant le front d'onde de manière très précise, d'obtenir la répartition d'éclairement souhaitée après propagation des faisceaux laser.

De la même façon, le développement des modulateurs spatiaux de lumière (*SLM* : *Spatial Light Modulator*) et des microsystèmes électromécaniques (*MEMS* : *Microelectromechanical systems*, des micro-miroirs par exemple) permettent de contrôler localement la phase du front d'onde et d'agir sur les faisceaux lumineux en temps réel.

Tous ces composants (*DOE, SLM, MEMS,* Miroirs déformables) sont utilisés dans un nombre grandissant d'applications d'optique de pointe. Exemples d'applications des DOE ou des SLM :

- mise en forme de faisceaux laser,
- microscopie, biologie, biophotonique (pinces optiques, manipulation de molécules),
- optique atomique (manipulation d'atomes froids),
- optique instrumentale (corrections d'aberration, optique adaptative, afficheurs, illumination structurée, diffuseur calculé, matrice de microlentilles...),...

Dans la salle de TP vous trouverez un exemple de *DOE* fabriqué par la société *Holotetrix* éclairé par un laser HeNe. Vous pouvez constater la qualité des répartitions d'illuminations structurées obtenues et la quasi-absence de l'ordre 0 de diffraction.

Voici aussi quelques sites de fabricants de ces divers composants (actifs ou passifs) :

sales.hamamatsu.com/assets/pdf/parts X/x10468 series kacc1172e06.pdf

www.holoeye.com

www.itrc.narl.org.tw/index-e.php

Au cours de ce TP, nous allons réaliser quelques exemples d'Eléments Optiques Diffractifs. Le support utilisé sera un simple transparent imprimé en noir et blanc par une imprimante laser. Précisément, nous allons réaliser des *DOE* imprimés en noir et blanc, dont la transformée de Fourier optique permet d'obtenir la répartition d'éclairement souhaitée dans le plan de Fourier.

Nous verrons plusieurs méthodes pour calculer ces *DOE* toutes basées sur des calculs de transformée de Fourier discrète (FFT).

1 Préparation à faire avant le TP

Le principe du montage utilisé au cours de ce TP est donné par la figure 3.1 ci dessous :

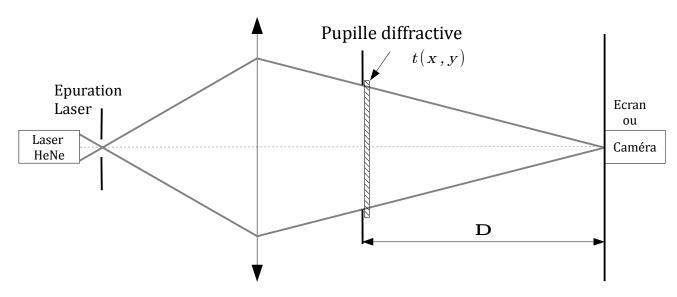


FIGURE 3.1 – Montage

Il s'agit du montage vu en première année pour le TP diffraction à l'infini. Le Laser HeNe est équipé d'un système d'épuration (objectif de microscope $\times 20$ et trou de $20\,\mu\mathrm{m}$) permettant d'éclairer uniformément le système optique (ici un simple doublet) qui conjugue le trou source et le plan image. La distance pupille–plan image est $D\approx 3\,\mathrm{m}$ (limitée par la dimension de la salle de TP).

Dans le plan de la pupille, on placera un élément optique diffractif de transmission connue complexe t(x,y).

- P1 Comment calcule-t-on la répartition d'éclairement dans le plan image?
- **P2** Quelle est la répartition d'éclairement et la dimension de la tache image, si t(x, y) = 1 sur toute la pupille (et 0 en dehors de la pupille)?
- **P3** Quelle est la répartition d'éclairement si l'élément diffractif est un simple réseau sinusoïdal en amplitude de période T_R :

$$t(x,y) \propto \left(1 + \sin\left(\frac{2\pi x}{T_R}\right)\right)$$

Quelle est l'amplitude relative des ordres +1 et -1 par rapport à l'ordre 0?

P4 Mêmes questions si l'élément diffractif est une mire de Foucault de même période. Rappel : une mire de Foucault est un réseau binaire :

t(x,y) = 0 pour x compris entre 0 et $\frac{T_R}{2}$

t(x,y) = 1 pour x entre $\frac{T_R}{2}$ et T_R

P5 Pourquoi n'est-il pas possible d'obtenir un ordre 0 nul si t(x, y) est une transmission réelle?

32 C 3. DOES

P6 Donner un exemple d'élément diffractif périodique (de transmission complexe) permettant d'obtenir un ordre 0 nul.

On cherchera dans la deuxième partie du TP à calculer et réaliser un *DOE* qui permette par transformée de Fourier optique d'obtenir l'image souhaitée (votre œuvre d'art).

- P7 Cette image souhaitée est une image binaire (noir et blanc) que vous devez préparer sous n'importe quel logiciel (par exemple Paint). Choisir :
 - Attribut de l'image: 128 par 128 pixels,
 - couleur : Noir et Blanc.

Faire un dessin (libre!!!) , simple de préférence et surtout en **noir sur fond blanc**. Il est par ailleurs conseillé d'encadrer le dessin en noir, pour délimiter avec précision l'objet et de ne pas dessiner des traits trop fins. Sauvegarder ce fichier image en format BMP (format binaire noir/blanc) sur une clé que vous apporterez en TP.

2 Correction d'une aberration par un élément d'optique diffractive

La correction des aberrations d'un système optique par des *DOE* est un domaine très actif (par exemple : correction des aberrations chromatiques dans le domaine infrarouge). Vous allez ici étudier un exemple de *DOE* qui permet de corriger une aberration géométrique.

2.1 Principe de la correction du front d'onde aberrant

Une aberration géométrique résulte d'un défaut de phase du front d'onde par rapport au front d'onde sphérique que donnerait un système optique parfait. Notons $\Phi_{\text{aberration}}(x,y)$ cette phase aberrante.

Pour corriger ce défaut, il suffit en principe de disposer d'un système capable de compenser exactement ce défaut de phase par une phase de signe contraire $-\Phi_{\rm aberration}(x,y)$. On peut utiliser par exemple un miroir déformable, une matrice de cristaux liquide ou un cristal photoréfractif (variation d'indice) et réaliser ainsi une optique active (correction statique) ou adaptative (correction dynamique). Tous ces dispositifs sont en général onéreux et il nous est impossible de moduler en phase le front d'onde avec le matériel dont on dispose pour ce TP. On va contourner cette difficulté en utilisant une porteuse de transmission sinusoïdale modulée en phase. On peut ainsi réaliser une expérience très simple avec un DOE synthétisé par ordinateur et imprimé en niveau de gris sur un transparent d'imprimante laser.

La phase que l'on veut corriger $-\Phi_{\rm aberration}(x,y)$ est codée grâce à un réseau sinusoïdal en amplitude de pas variable :

— le réseau sinusoïdal qui joue le rôle de porteuse a une transmission qui est :

$$t(x,y) \propto (1 + \sin(2\pi f_R x))$$

où f_R est la fréquence spatiale du réseau en mm^{-1} ,

— la phase aberrante, $\Phi_{\rm aberration}(x,y)$, à corriger est codée comme une modulation de phase de cette porteuse. On obtient donc un réseau déformé dont le facteur de transmission est :

$$t(x,y) \propto (1 + \sin(2\pi f_R x - \Phi_{\text{aberration}}(x,y))$$

2.2 Mise en œuvre

Pour effectuer la simulation et l'impression d'une mire diffractive, lancer sous Matlab le script >>diabholo. La phase aberrante est calculée à l'aide des polynômes de Zernicke (voir formules dans la documentation du ZYGO par exemple). Il est possible de choisir le pas du réseau et le nombre de points utilisés pour le calcul, puis de choisir une aberration parmi les aberrations du 3ème ordre ou correspondant à un polynôme de Zernicke d'ordre plus élevé.

Le programme affiche successivement :

- le réseau sinusoïdal parfait,
- sa FFT 2D,
- le réseau modulé,
- sa FFT 2D,
- **Q1** Interpréter les réseaux et les FFT 2D obtenus pour diverses aberrations et pour différentes valeurs du pas du réseau. Pour de fortes aberrations, expliquer les phénomènes d'aliasing observés sur la FFT 2D.
- \leadsto Choisir une aberration de coma ou d'astigmatisme. Calculer le réseau correspondant et l'imprimer sur transparent.
- → Faire de même pour un large défaut de mise au point.
- Effectuer le montage de transformée de Fourier optique de la figure 3.1. Vérifier et, au besoin, régler le système d'épuration Laser. Le clairaut doit être utilisé rigoureusement sur l'axe et dans le bon sens, effectuer les réglages nécessaires. Effectuer la mise au point précise sur l'écran dépoli.
- Placer dans un premier temps le *DOE* correspondant à un défaut de mise au point.
- **Q2** Donner l'expression de l'éclairement dans le plan de Fourier en fonction de la phase aberrante et des paramètres du montage dans le cas d'un défaut de mise au point.
- **Q3** Observer et commenter la figure dans le plan de Fourier. Vérifier que l'on obtient bien un défaut de mise au point dans l'ordre +1 et -1. Évaluer le défaut de mise au point et comparer à la valeur attendue compte tenu de l'amplitude de la phase aberrante choisie.
- → Placer ensuite le DOE correspondant aux aberrations choisies.

34 *C 3. DOES*

- Q4 Observer et commenter la figure dans le plan de Fourier.
- **Q5** Expliquer comment utiliser ces hologrammes pour corriger les aberrations géométriques correspondantes.

Q6 Comparer les figures obtenues et les simulations. Expliquez la présence d'autres ordres de diffraction que 0, +1 et -1. Utiliser le microscope peut vous aider à répondre à cette question.

3 DOE obtenu par codage de Lohmann

L'objet de cette partie est de réaliser un DOE qui permette dans le plan de Fourier de visualiser votre "œuvre d'art" que nous appellerons $O_{\operatorname{Art}}(x,y)$. Pour cela, la première étape consiste à calculer la transformée de Fourier de ce dessin : $\widehat{O}_{\operatorname{Art}}(x\prime,y\prime)=\operatorname{TF}[O_{\operatorname{Art}}(x,y)]$. Nous verrons ensuite qu'il sera nécessaire d'ajouter une phase aléatoire à votre dessin avant de pouvoir exploiter sa transformée de Fourier. Cette transformée de Fourier étant en général toujours à valeurs complexes $\widehat{O}_{\operatorname{Art}} \in \mathbb{C}$, il est nécessaire pour obtenir l'élément diffractif souhaité de coder à la fois l'amplitude et la phase de cette fonction. Vous verrez que le codage de Lohmann est un moyen très astucieux d'y parvenir.

3.1 Calcul de la TFD 2D

- → Lancer une session Matlab, puis le programme menu_HSO_2008.
- Le menu Charger un dessin permet d'ouvrir votre œuvre d'art et de l'afficher en noir sur fond blanc et en négatif (blanc sur fond noir). C'est ce négatif qui correspond à la répartition d'éclairement souhaitée dans le plan image.
- Effectuez la transformée de Fourier numérique (FFT) de votre œuvre d'art.
- **Q7** Le résultat obtenu vous parait-il conforme à ce que vous attendiez? Pourquoi le spectre est-il symétrique autour de la fréquence nulle?

On constate que l'éclairement est très mal réparti dans le plan de Fourier. L'amplitude sera donc très difficile à coder correctement compte tenu du très faible nombre de niveaux de codage dont nous disposons.

3.2 Ajout d'une phase aléatoire sur l'objet

La solution astucieuse pour contourner cette difficulté consiste à ajouter une phase aléatoire sur l'objet.

 \leadsto Utiliser pour cela le menu Ajouter une phase aléatoire. Cette fonction consiste à faire l'opération suivante :

$$O_{\text{Art}}(x,y) \implies O_{\text{Art}}(x,y)e^{i\phi(x,y)}$$

où $\phi(x,y)$ est une variable aléatoire uniforme entre - π et + π .

- **Q8** Pourquoi le spectre obtenu en ajoutant une phase aléatoire sera-t-il beaucoup plus facile à coder? Pourquoi l'objet, après TF inverse, sera-t-il bien restitué malgré cette phase aléatoire?
- Calculer la transformée de Fourier inverse pour vous convaincre que l'on retrouve bien l'objet inchangé par cette opération.
- \longmapsto En réalité, reconstruire l'objet auquel on a ajouté une phase aléatoire entraînera nécessairement du speckle sur l'objet reconstruit.

3.3 Principe du codage de Lohmann

Pour restituer votre œuvre d'art à partir de sa FFT. à deux dimensions, il faut donc trouver un moyen de coder cette FFT en module et en **phase**.

Le codage très astucieux utilisé ici est dû à Lohmann (voir les articles de Lohmann Applied Optics 5 967 (1966) et 6 1739 (1967)) et repose sur l'utilisation du principe d'Huygens .

Votre œuvre d'art est en fait une image numérique de 128×128 pixels :

$$O_{\operatorname{Art}}\left[i,,j
ight] \qquad i,j\in\left[1,\ldots,128
ight]$$

1. On calcule la transformée de Fourier discrète (FFT) de cette image, le résultat est une image de 128×128 pixels :

$$O_{\operatorname{Art}}[i,j] \xrightarrow{\operatorname{FFT}} z_{n,m} = A_{n,m} e^{j\varphi_{n,m}} \qquad n,m \in [1,\ldots,128]$$

- 2. On considère 128×128 cellules élémentaires carrées, de côté a. Chaque cellule code un nombre complexe $z_{n,m}$ de la façon suivante :
 - (a) **Codage du module**. Chaque cellule contient un rectangle blanc dont la surface est proportionnelle à l'amplitude. La largeur du rectangle est fixe (égale à $\frac{2a}{5}$), c'est la hauteur du rectangle qui est donc proportionnelle à l'amplitude.

$$h_{n,m} = a \cdot \frac{A_{n,m}}{A_{\text{max}}}$$

où $A_{\rm max}$ est l'amplitude maximale dans les 128×128 pixels.

(b) **Codage de la phase.** La position du rectangle blanc est décalée horizontalement, par rapport au centre de la cellule, proportionnellement à l'argument du même nombre complexe.

$$c_{n,m} = \frac{1}{2} \cdot a \cdot \frac{\varphi_{n,m}}{\pi} \text{ avec } \varphi_{n,m} \in [-\pi, +\pi]$$

36 *C 3. DOES*

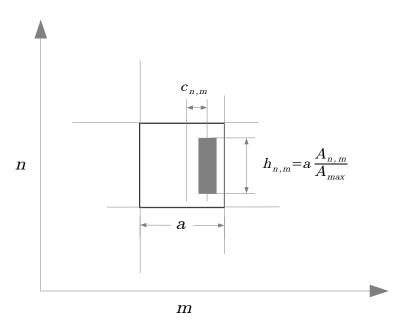


FIGURE 3.2 – Principe du codage de Lohmann

Q9 En vous appuyant sur la première partie du TP, expliquer simplement le principe du codage de la phase. Quelle est la position du rectangle blanc pour $\varphi = 0$, π , $-\pi$. Pour quelle direction, par rapport à l'onde de restitution, la phase sera-t-elle correctement codée?

Impression

- Imprimez le codage de Lohmann de la FFT, en blanc sur fond noir, sur un transparent. Utiliser l'option print de la figure Matlab. Le menu page setup permet de déplacer l'hologramme dans la page et économiser ainsi des transparents. Veillez à ce que l'imprimante soit bien réglée sur la résolution maximale (1200 dpi).
- **Q10** Pourquoi, d'un point de vue pratique, doit-on imprimer une image de petite taille, de dimension maximale 2 à 3 centimètres de côté?
- **Q11** La résolution de l'imprimante est 1200 dpi. Dpi signifie *Dots Per Inch* (points par pouce) et un pouce correspond à environ 2,54 cm. La figure a une dimension de 2,71 cm de côté. De combien de points dispose-t-on pour coder chaque cellule de l'hologramme. Cette résolution est-elle suffisante?
- Utiliser le menu Reconstruction Hologramme pour avoir une idée du résultat de la Transformée de Fourier que l'on obtiendra finalement. L'amplitude dans le plan de Fourier est obtenue par le calcul de FFT 2D sur 1024 par 1024 pixels (zero padding). L'éclairement est affiché en échelle logarithmique seuillé à $-40 \, \mathrm{dB}$.

3.4 Restitution optique de l'image

Il faut maintenant effectuer une transformation de Fourier optique pour restituer l'objet.

- Observez l'image (l'oeuvre d'art?) restituée dans le plan de Fourier en transparence sur un écran dépoli.
- **Q12** Commentez les phénomènes observés. Sont-ils conformes à vos prévisions? Pourquoi obtenez-vous plusieurs répliques de l'objet?
- **Q13** Pourquoi l'éclairement de l'objet restitué n'est-il pas uniforme? Pourquoi est-il plus important au centre?

4 Codage de la partie réelle de la Transformée de Fourier de l'objet

Une autre solution astucieuse pour obtenir le *DOE* consiste à ne coder que la partie réelle de la TF de l'objet souhaité.

- Utiliser pour faire cette opération le menu Codage de la partie réelle de la FFT. Le codage est un codage binaire que vous pouvez imprimer sur transparent de la même façon.
- Williser le menu Reconstruction Hologramme pour avoir une idée du résultat de la Transformée de Fourier que l'on obtiendra finalement.
- **Q14** Pourquoi obtient donc dans ce cas l'objet et l'objet symétrique? Quelle astuce simple a-t-on utilisée pour que l'objet et l'objet symétrique ne soit pas superposés?

5 Analyse d'un DOE en phase

- Placer le DOE « Nemo » sur le banc et régler le montage afin d'obtenir une image nette sur un écran.
- **Q15** L'image est-elle symétrique? périodique? pixellisée? Quelle est sa dimension? Que peut-on déduire sur le DOE?
- Observez le *DOE* au microscope. Posez le DOE sur la platine sans le fixer avec les pinces pour éviter de le rayer!
- **Q16** Quelles sont ses caractéristiques principales? Sur combien de niveaux différents est-il gravé?

C 3. DOES

C 4

Modulateur spatial de lumière (SLM)

Version du 11 septembre 2025

Objectifs pédagogiques À l'issue de la séance, vous serez capables :

- d'analyser les caractéristiques d'un faisceau laser modulé par un composant matriciel à cristaux liquides (polarisation, phase et intensité),
- de configurer et de régler un banc permettant de contrôler la structure d'intensité d'un faisceau dans un plan objet ou dans le plan de Fourier d'un système optique à l'aide d'un SLM,
- de décrire et de mettre en œuvre un algorithme d'optimisation avancé permettant de générer l'hologramme d'une image choisie sur le SLM.

Sommaire

· · · · · · · · · · · · · · · · · · ·							
	1	Introduction 3 Modulation de l'éclairement. Imagerie. 4					
	2						
		2.1 Descriptio	on du dispositif	40			
		2.2 Premières	observations	41			
		2.3 Mesure du	ı contraste	43			
		2.4 Linéarité e	en niveau de gris	43			
	3	Modulation en phase		43			
		3.1 Modificati	ons du banc	43			
		3.2 Calibration	n du déphasage	45			
		3.3 Masque de	e phase. Figures de diffraction	46			
		3.4 Hologram	mes synthétiques	47			
	Annexe : Physique des cristaux liquides						
	Ann	exe 2 : Calculs 1D	O de figures de diffraction de masques de phase	51			

1 Introduction

Placer un polariseur devant les écrans à votre disposition dans la salle (les 2 écrans de l'ordinateur, votre smartphone,...) et le faire tourner.

Q1 La lumière d'un écran à cristaux liquides est-elle polarisée?

La polarisation de la lumière est la caractéristique qu'un cristal liquide modifie. Un modulateur spatial de lumière est constitué d'une matrice de cristaux liquides. Chaque pixel est commandé par une tension électrique, chaque pixel peut donc modifier indépendamment la polarisation de l'onde lumineuse qui le traverse.

Selon le dispositif dans lequel le modulateur est inséré, ce contrôle de la polarisation peut être utilisé pour différentes applications.

Au cours de cette séance vous allez utiliser un modulateur spatial de lumière (*Spatial Light Modulator, SLM*) pour deux types d'applications, la première est dite "en modulation d'amplitude" utilisée pour l'imagerie, la seconde « en modulation de phase » pour la réalisation de masques diffractifs (hologrammes, *DOE Diffractive optical elements*).

2 Modulation de l'éclairement. Imagerie.

2.1 Description du dispositif

Le SLM que l'on utilise au cours de cette séance (Holoeye - LC2002, dont un extrait de documentation est donné figure 4.1) est piloté via un signal VGA par une interface informatique qui a été développée sous Matlab.

Display

Contrast ratio:

Type: SONY LCX016AL-6
Colours: Grey-level image playback
Active Area: 26.6 mm x 20.0 mm (1.3")
Number of image pixels: 832 x 624
Pixel pitch: 32 μ m
Image frame rate: max. 60 Hz

typically 200:1

FIGURE 4.1 – Extrait de la documentation du SLM Holoeye – LC2002

Cette interface permet d'afficher des images sur le SLM et de récupérer le signal de la caméra d'observation. Elle permet de transformer le signal de l'image à projeter (codée en niveau de gris) en tension de commande pour le SLM, selon une fonction de transfert programmable (de manière équivalente aux réglages de contraste ou de luminosité sur les écrans). Dans notre cas cette fonction de transfert a été optimisée en amont pour réaliser de manière optimale les différentes expériences demandées dans la manip de TP que vous allez faire et vous n'avez pas accès à ces réglages. Les niveaux de gris de l'image (dont le lien avec la tension appliquée est donc masqué par le logiciel) serviront donc de référence tout au long du TP.

Le SLM fonctionne en transmission, il est inséré sur le banc entre deux éléments permettant de contrôler la polarisation :

- en entrée, un polariseur suivi d'une lame demi-onde,
- et un analyseur permettant de sélectionner une direction de polarisation en sortie.

Le banc est présenté sur la photo de la figure 4.2. Un premier objectif (L_1) permet de collimater le faisceau, un deuxième (L_2) permet d'imager le SLM sur le plan de la caméra d'observation.

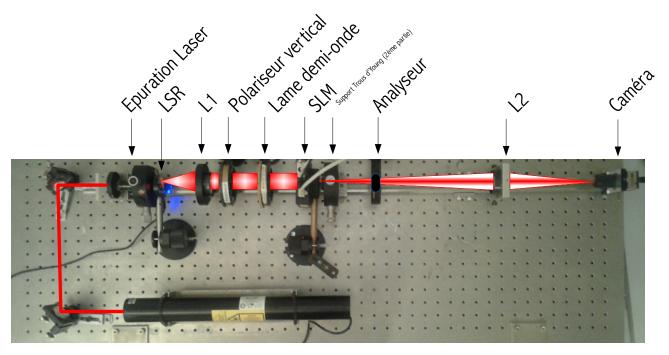


FIGURE 4.2 – Les différents éléments du montage. Configuration d'imagerie.

2.2 Premières observations

Le schéma de la figure 4.3 décrit les orientations des différents éléments du banc dans la configuration d'imagerie que l'on utilise dans cette partie.

- \sim Allumer la source laser et régler l'axe de la lame $\lambda/2$, placée après le polariseur vertical, afin que la polarisation en entrée soit rectiligne et horizontale (les axes des polariseurs et de la lame $\lambda/2$, correspondent à la graduation 0).
- \rightarrow Placer l'axe de l'analyseur en position horizontale ($\theta_a = 0$ sur la figure 4.3).
- Sans lancer le logiciel d'interfaçage (ou en coupant l'alimentation du SLM), évaluer visuellement la transmission du montage. Les pixels du SLM utilisent la technologie des cristaux nématiques twistés (voir annexe page 49), déduisez de votre observation l'angle de "twist" du cristal nématique lorsque la tension appliquée est nulle.

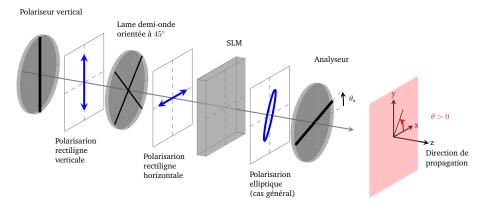


FIGURE 4.3 – Schéma du montage en configuration imagerie. Orientation des différents éléments.

Alimenter le SLM. Lancer le logiciel d'interfaçage du SLM et de la caméra, initialiser la caméra. Pour cela, lancer le logiciel matlab et taper »SLM à la ligne de commande, puis sélectionner le menu

Initialisation Caméra

- Appliquer sur une moitié de la surface du SLM un niveau de gris nul (NG=0), sur l'autre moitié un niveau de gris maximal (NG=255) à l'aide du menu Coupe Verticale.
- \rightarrow En utilisant le menu Paramètres Caméra, régler le temps d'exposition de la caméra à une valeur de $0,2\,\mathrm{ms}$ environ.
- \sim Régler la position du Clairault L_2 afin d'imager le SLM sur la caméra, avec un grandissement inférieur à 1.
- **Q2** Les pixels commandés en niveau de gris égal à 0 (NG=0, c'est à dire les pixels noirs sur l'image de commande) s'affichent-ils en noir sur la caméra? que pouvez vous en déduire sur la tension appliquée aux pixels du SLM pour NG=0?
- → Tourner l'analyseur de 90°.
- Q3 Expliquer les modifications apportées à l'image.
- Charger une image de commande de votre choix et vérifier le résultat obtenu sur la caméra en fonction de la position de l'axe de l'analyseur. Pour cela utiliser le menu Charger une image.

2.3 Mesure du contraste

Coupe Verticale. Sélectionner le menu

Analyse de la polarisation.

- Tracer les courbes du signal moyen reçu par la caméra en fonction de la position de l'axe de l'analyseur, pour les niveaux de gris de commande NG=0 et NG=255.
- Q4 Quelle est la position de l'axe de l'analyseur permettant d'obtenir un contraste maximal? La position permettant d'obtenir l'image la plus lumineuse, pour NG=0? Pour NG=255?
- **Q5** Expliquer l'allure de ces deux courbes. La polarisation en sortie du SLM est-elle rectiligne?
- Q6 Donner l'expression de l'ellipticité de la polarisation en fonction des paramètres de votre courbe de transmission mesurée. Déterminer l'orientation et l'ellipticité de la polarisation en sortie du SLM pour un niveau de gris de commande à NG=0 et à NG=255 à partir de vos deux courbes. Comparer les valeurs trouvées à celles déterminées directement par le logiciel.

2.4 Linéarité en niveau de gris

- Placer l'analyseur dans l'orientation assurant un contraste maximal et tracer la courbe donnant le signal de la caméra en fonction du niveau de gris de commande appliqué au pixel.
- **Q7** Cette courbe est-elle linéaire? Quelle allure de courbe obtiendrait-on si le SLM ne modifiait que l'orientation de la polarisation en fonction du niveau de gris de commande?

Cette partie a permis illustrer le fonctionnement "en modulation d'amplitude" d'un SLM. La partie suivante concerne la "modulation en phase".

3 Modulation en phase

3.1 Modifications du banc

Le schéma de la figure 4.4 décrit les orientations des différents éléments du banc dans la configuration de modulation en phase que l'on utilise dans cette partie.

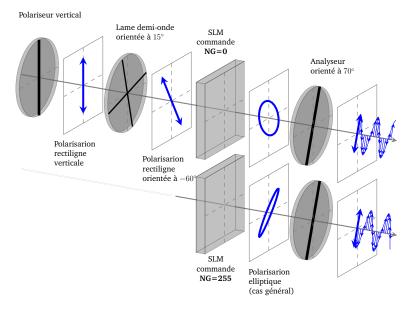


FIGURE 4.4 – Schéma du montage en configuration de modulation de phase. Orientation des différents éléments et illustration du principe de la modulation de phase.

Modification de la polarisation d'entrée et de l'axe de l'analyseur en sortie

- Appliquer à nouveau sur une moitié de la surface du SLM un niveau de gris nul (NG=0), sur l'autre moitié un niveau de gris maximal (NG=255) à l'aide du menu Coupe Verticale.
- Tourner la lame demi-onde de manière à régler la polarisation en entrée rectiligne et orientée à $\theta_p = -60^\circ$ (c'est à dire que l'axe de la lame doit être orienté selon un axe à $-30+45=15^\circ$). Placer l'axe de l'analyseur dans la position $\theta_a = 70^\circ$.
- **Q8** Pourquoi l'amplitude est-elle peu différente dans les deux zones de l'image donnée par la caméra?

Elément mystère: LSR

- Retirer l'élément "LSR" du faisceau. Modifier le temps d'intégration de la caméra afin de ne pas saturer l'image.
- **Q9** Cet élément est un "Laser Speckle Reducer" soit un réducteur de speckle laser. Il s'agit d'une lame diffusante et vibrante. Expliquer les modifications observées sur l'image

Diffraction

 \rightarrow Déplacer le clairault L_2 pour placer la caméra dans le plan de Fourier de L_2 . Et placer une image de commande uniforme. Régler le temps d'intégration de la caméra au minimum.

- **Q10** Pourquoi apparaît-il plusieurs pics de diffraction dans les directions horizontale et verticale sur l'image de la caméra?
- → Mesurer l'espacement entre ces pics en nombre de pixels de la caméra.

Le capteur de la caméra est une matrice de 1280×1024 pixels, chaque pixel est carré de côté $5, 2 \,\mu\mathrm{m}$ (soit un capteur de $6, 6 \times 5, 3 \,\mathrm{mm}$). L'objectif L_2 est un Clairault de focale $f' = 120 \,\mathrm{mm}$.

Q11 Donner la valeur de l'espacement entre les pics en mm. En déduire une estimation de la taille des pixels du SLM et confronter votre estimation aux données du constructeur.

3.2 Calibration du déphasage

Q12 Quels types de dispositifs permettent de mesurer la phase d'une onde lumineuse?

Dans cette partie, on insère des trous d'Young sur le banc, après l'analyseur, et on observe les franges obtenues dans le plan de Fourier.

- Placer les trous d'Young sur le banc et placer une image de commande coupée en deux parties par le menu Coupe Verticale.
- \leadsto En utilisant le menu Paramètres Caméra, régler le temps d'exposition afin de ne pas saturer l'image. Utiliser dans ce même menu l'onglet Size afin de zoomer sur l'affichage sur les franges d'interférences (choisir par exemple une zone d'intérêt de 300×300 pixels à partir du pixel (450,400)).
- Régler la position de la séparation entre les deux zones de telle sorte à ce qu'elle se trouve entre les deux trous. Vérifier le bon positionnement de cette séparation en inversant les niveaux de gris des deux zones, les franges de la figure d'interférence doivent se décaler lors de cette inversion d'image.
- Q13 Expliquer pourquoi les franges se décalent ainsi.
- Estimer l'ordre de grandeur du décalage.
- **Q14** Que peut-on en déduire sur l'ordre de grandeur du déphasage apporté par un pixel commandé en NG=0 par rapport à un pixel commandé en NG=255?
- Observer le profil des franges via le menu Profil de l'image et modifier si besoin le temps d'intégration afin d'assurer que le signal ne soit pas saturé.

Mesurer le déphasage apporté par le SLM en fonction du niveau de gris de commande à l'aide de la routine Calibration du déphasage.

La routine Calibration du déphasage détermine le décalage spatial de la figure d'interférences en approchant les franges par une loi sinusoïdale. Elle permet de déterminer en même temps l'amplitude des franges ainsi que l'offset.

- Q15 Quelle est la valeur du déphasage maximal obtenu dans cette configuration? Est-ce compatible avec vos premières observations? Le déphasage évolue-t-il linéairement avec le signal de commande?
- **Q16** Le déphasage serait-il identique pour une source différente, par exemple pour un Laser à $532 \,\mathrm{nm}$?

Dans cette configuration particulière, le SLM est donc un outil de modulation de la phase d'un front d'onde, la phase de chaque pixel est commandée par un niveau de gris de commande. C'est cet outil que l'on utilise dans la partie suivante.

3.3 Masque de phase. Figures de diffraction

- Oter les trous d'Young du montage et modifier à nouveau le temps d'intégration afin de ne pas saturer l'image.
- Appliquer un masque de phase en réseau rectangulaire et modifier le pas du réseau ainsi que l'amplitude du déphasage total. Remplacer le masque rectangulaire par un réseau de profil "en dents de scie".
- Q17 Analyser les figures de diffractions obtenues pour ces différents réseaux.
- **Q18** Quelle est la relation entre la variation de phase dans le plan du SLM $\Delta\phi_{\text{SLM}}(x,y)$ et l'intensité $I(\sigma,\mu)$ dans le plan de Fourier?

Réaliser un hologramme synthétique en phase consiste à construire la loi de variation de la phase $\phi_{\text{SLM}}(x,y)$ afin d'obtenir l'intensité voulue $I(\sigma,\mu)$ dans le plan de Fourier.

Q19 Pourquoi une simple transformée de Fourier inverse ne permet-elle pas de calculer $\phi_{\text{SLM}}(x,y)$?

Le paragraphe suivant présente une méthode permettant d'obtenir le masque de phase recherché, l'algorithme itératif de Gerchberg-Saxton.

3.4 Hologrammes synthétiques

Observations

Dessiner une image en blanc sur fond noir. La sauvegarder en format Bitmap monochrome (vous pouvez utiliser le logiciel Microsoft/Paintpar exemple).

Calculer le masque de phase correspondant à l'aide de la routine Hologramme synthétique et l'appliquer au SLM. Une dizaine d'itérations de l'algorithme est en général suffisante.

Q20 Analyser la figure de diffraction obtenue dans le plan de Fourier. Est-elle proche de celle attendue? En quoi en diffère-t-elle?

Algorithme de Gerchberg-Saxton

Le calcul du masque de phase dans la routine Hologramme synthétique utilise l'algorithme itératif de Gerchberg-Saxton. Le principe de cette méhode, datant de 1972 ¹, est décrite sur la figure 4.5.

On note $I_{cible}(\sigma,\mu)$ l'éclairement attendu dans le plan de Fourier.

Première étape On amorce le calcul avec une image uniforme en amplitude et possèdant une phase aléatoire :

$$M_0(x,y)=\mathrm{e}^{j\phi_0(x,y)}$$
 où $\phi_0(x,y)$ uniformément répartie entre 0 et 2π

Image dont on calcule la transformée de Fourier discrète qui est une grandeur complexe :

$$M_0(x,y) \xrightarrow{TF} |\widetilde{M}_0(\sigma,\mu)| \cdot e^{j\varphi_0(\sigma,\mu)}$$

De cette grandeur, on ne retient que le terme de phase et on l'associe au module voulu pour construire la première 'chimère' numérique de l'algorithme :

$$\widetilde{C}_1(\sigma,\mu) = \sqrt{I_{cible}(\sigma,\mu)} \cdot e^{j\varphi_0(\sigma,\mu)}$$

La transformée inverse de cette "chimère" fournit une grandeur complexe dont la phase sera une première valeur approchée du masque de phase :

$$\widetilde{C}_1(\sigma,\mu) \xrightarrow{TF^{-1}} C_1(x,y) \cdot e^{j\phi_1(x,y)}$$

 $\phi_1(x,y)$ est le masque de phase calculé à l'issue de cette première étape.

^{1.} R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures", Optik 35, 237 (1972)

Récurrence Ce premier masque de phase est alors utilisé pour construire une nouvelle image d'amplitude constante :

$$M_1(x,y) = e^{j\phi_1(x,y)}$$

et une procédure identique à celle d'initialisation est appliquée :

Image de départ		$M_1(x,y) = e^{j\phi_1(x,y)}$
calcul de TF	\rightarrow	$arphi_1(\sigma,\mu)$
construction d'une chimère		$\widetilde{C}_2(\sigma,\mu) = \sqrt{I_{cible}(\sigma,\mu)} \cdot e^{j\varphi_1(\sigma,\mu)}$
calcul de TF inverse	\rightarrow	masque de phase $\phi_2(x,y)$

Itérations On réinjecte $\phi_2(x,y)$ à la place de $\phi_1(x,y)$ dans le calcul précédent pour réaliser une itération de plus, etc.

Cet algorithme récursif peut être décrit par le schéma de la figure 4.5

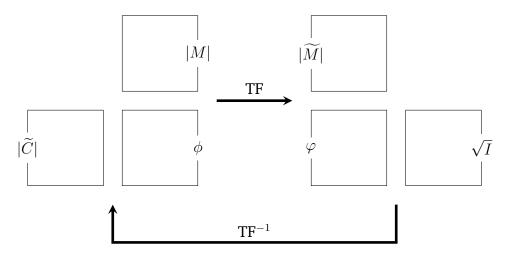


FIGURE 4.5 – Schéma de principe d'une itération de l'algorithme de Gerchberg-Saxton. Le masque de phase ϕ est modifié à chaque itération.

Annexe: Physique des cristaux liquides

Les cristaux liquides ont une structure associant les propriétés d'un cristal et celles d'un liquide. Ces propriétes ont été découvertes à la fin du XIXème siècle et les premiers écrans utilisant des pixels de cristaux liquides datent des années 1970.

Structure d'un pixel nématique

Dans les dispositifs optiques, ce sont des cristaux liquides "nématiques twistés" qui sont utilisés, chaque pixel est composé de molécules en structure cristalline, l'orientation des molécules peut être modifiée par l'application d'une tension. Les figures suivantes illustrent la structure d'un pixel de cristal liquide, elles sont extraites de la documentation du SLM Holoeye.

En l'absence de tension appliquée, la direction des molécules suit une structure en hélice. Entre l'orientation des molécules sur la face d'entrée et celle des molécules de la face de sortie, la rotation est de 90°, la figure 4.6 illustre cette propriété.

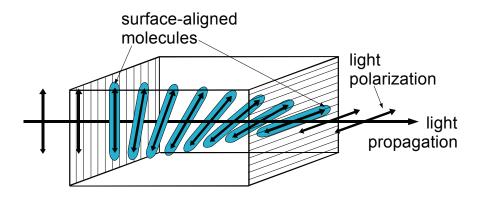


FIGURE 4.6 - Schéma de principe d'un pixel "nématique". Crédit Holoeye

Lors de l'application d'une tension, l'orientation des molécules est modifiée. La figure 4.7 illustre cette effet pour 3 cas. Dans le cas (A) une tension nulle est appliquée, l'orientation des molécules tourne tout en restant dans le plan orthogonal à l'axe de propagation. Dans le cas (B), une tension non nulle est appliquée, les molécules basculent dans une direction différente du plan orthogonal à l'axe de propagation. Enfin dans le cas (C) où tension importante est appliquée, les molécules centrales basculent dans la direction de l'axe de propagation.

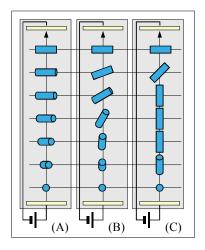


FIGURE 4.7 – Schéma de principe d'un pixel "nématique" soumis à une différence de potentiel électrique, de valeur croissante de gauche à droite Crédit Holoeye

Biréfringence d'un cristal liquide

Les molécules anisotropes qui le composent conférent aux cristaux liquides des propriétes de biréfringence. C'est un matériau biréfringent en général uniaxe et on distingue donc l'indice optique ordinaire et l'indice optique extraordinaire pour décrire la propagation de la lumière dans la cellule de cristal liquide. L'orientation contrôlée des molécules permet de modifier l'indice extraordinaire de la cellule selon le principe du schéma de la figure 4.8. La propagation dans la cellule de cristal liquide peut donc être modélisée par un empilement de lames de phase très fines, de direction différente au fur et à mesure de la propagation.

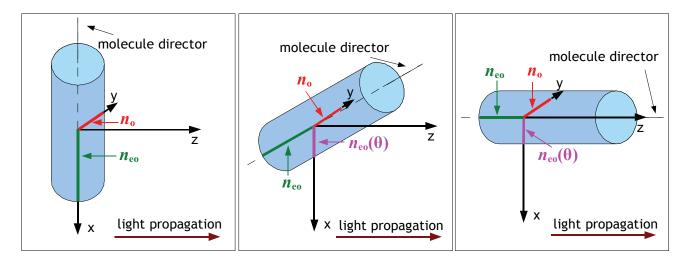


FIGURE 4.8 – Effet de l'orientation d'une molécule sur son indice extraordinaire apparent. n_o , n_{oe} désignent les indices ordinaires et extraordinaires. Dépendant de l'orientation θ de la molécule, l'indice extraordinaire apparent est noté $n_{oe}(\theta)$. Crédit Holoeye

51

Annexe 2 : Calculs 1D de figures de diffraction de masques de phase

Cas d'un profil du masque de phase "en dents de scie"

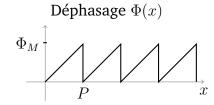


FIGURE 4.9 – Profil spatial d'un réseau en phase, de pas P et de profondeur de modulation Φ_M .

La transmission $t(x)=\mathrm{e}^{-j\Phi(x)}$ du réseau étant périodique on peut l'exprimer sous forme d'un produit de convolution par un peigne de Dirac.

$$t(x) = (m \star \coprod_{p})(x)$$

où le motif élémentaire est noté m(x).

La diffraction par un tel réseau permet d'obtenir dans le plan de Fourier, un champ proportionnel à la transformée de Fourier du réseau, que l'on peut exprimer en se limitant à une seule direction ν à :

$$\tilde{t}(\nu) = \frac{1}{P} \cdot \tilde{m}(\nu) \cdot \coprod_{\frac{1}{P}} (\nu)$$

On obtient bien une suite de points brillants espacés d'un écart proportionnel à $\frac{1}{P}$. L'intensité de chaque point brillant, c'est à dire de chaque ordre de diffraction k est proportionnelle au coefficient A_k :

$$A_k = \left| \frac{1}{P} \tilde{m} \left(\frac{k}{P} \right) \right|^2$$

L'expression de la transformée de Fourier $\tilde{m}(\nu)$ du motif m(x) est obtenue par :

$$\tilde{m}(\nu) = \int_0^P e^{-j\Phi(x)} \cdot e^{-j2\pi\nu x} dx$$

Dans le cas du réseau de la figure 4.9,

$$\tilde{m}(\nu) = \int_{0}^{P} e^{-j\frac{\Phi_{M}}{P} \cdot x} \cdot e^{-j2\pi\nu x} dx$$

$$= \frac{-1}{j\frac{\Phi_{M}}{P} + j2\pi\nu} \left[e^{-j\frac{\Phi_{M}}{P} \cdot x} \cdot e^{-j2\pi\nu x} \right]_{0}^{P}$$

$$= \frac{-1}{j\frac{\Phi_{M}}{P} + j2\pi\nu} \left[e^{-j\Phi_{M}} \cdot e^{-j2\pi\nu P} - 1 \right]$$

$$= \frac{-e^{-j\frac{\Phi_{M}}{2}} \cdot e^{-j\pi\nu P}}{\frac{j\Phi_{M}}{P} + j2\pi\nu} \left[-2j\sin\left(\frac{\Phi_{M}}{2} + \pi\nu P\right) \right]$$

$$= Pe^{-j\frac{\Phi_{M}}{2}} \cdot e^{-j\pi\nu P} \frac{\sin\left(\frac{\Phi_{M}}{2} + \pi\nu P\right)}{\frac{\Phi_{M}}{2} + \pi\nu P}$$

On peut réécrire cette transformée de Fourier sous la forme d'un sinus cardinal, dilaté et décalé :

$$\tilde{m}(\nu) = P e^{-j\frac{\Phi_M}{2}} \cdot e^{-j\pi\nu P} \frac{\sin\left(\pi P\left(\frac{\Phi_M}{2\pi P} + \nu\right)\right)}{\frac{\Phi_M}{2} + \pi\nu P}$$
$$= P e^{-j\frac{\Phi_M}{2}} \cdot e^{-j\pi\nu P} \operatorname{sinc}\left(P\left(\frac{\Phi_M}{2\pi P} + \nu\right)\right)$$

Les intensités des différents ordres k de diffraction sont alors proportionnelles à :

$$A_k = \left| \frac{\sin\left(\frac{\Phi_M}{2} + \pi k\right)}{\frac{\Phi_M}{2} + \pi k} \right|^2$$

Dans le cas où le déphasage total apporté par le masque de phase est $\Phi_M=2\pi$. Seul alors l'ordre -1 est non-nul, comme représenté sur la figure 4.10. C'est l'analogue d'un réseau échelette (ou *blazé*) en réflexion.

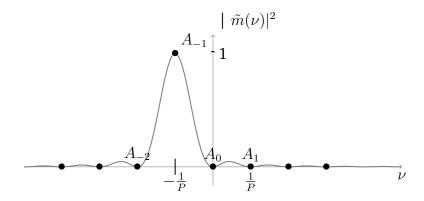


FIGURE 4.10 – Intensité du faisceau diffracté dans le cas de masque de phase de la figure 4.9, avec $\Phi_M=2\pi$

Un exemple de figure de diffraction obtenue pour $\Phi_M = \pi$ est donnée figure 4.11.

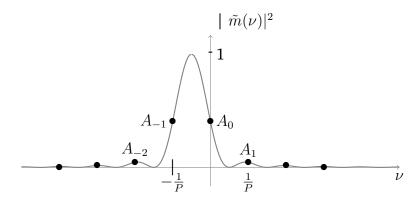


FIGURE 4.11 – Intensité du faisceau diffracté dans le cas de masque de phase de la figure 4.9, avec $\Phi_M=\pi$

Si la profondeur de modulation est inférieure à 2π , la mesure de l'ordre 0 :

$$A_0 = \left| \frac{\sin\left(\frac{\Phi_M}{2}\right)}{\frac{\Phi_M}{2}} \right|^2$$

de l'ordre 1:

$$A_1 = \left| \frac{-\sin\left(\frac{\Phi_M}{2}\right)}{\frac{\Phi_M}{2} + \pi} \right|^2$$

peut permettre de retrouver la valeur de Φ_M .

Effet de la pixellisation

Dans le cas d'un masque de phase réalisé par un SLM, le profil du déphasage apporté est modifié par la pixellisation. Par exemple au lieu d'un déphasage linéaire on obtient des paliers, comme sur la figure 4.12.

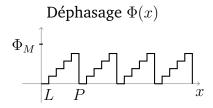


FIGURE 4.12 – Profil spatial d'un réseau en phase pixélisé, de pas P et de profondeur de modulation Φ_M .

La transmission $t(x)=\mathrm{e}^{-j\Phi(x)}$ du réseau est toujours périodique on peut l'exprimer sous forme d'un produit de convolution par un peigne de Dirac.

$$t(x) = (n \star \coprod_{P})(x)$$

où le motif élémentaire est noté n(x) peut s'exprimer à partir du motif m(x) précédent selon :

$$n(x) = \left(\left(m \cdot \coprod_L \right) \star \mathrm{Rect}_L \right)(x)$$

où la fonction $Rect_L(x)$ est la fonction rectangle définie par :

$$\operatorname{Rect}_L(x) = \left\{ \begin{array}{l} 1 \text{ si } x \in [0, L] \\ 0 \text{ sinon} \end{array} \right.$$

La transformée de Fourier du motif n(x) peut donc s'écrire :

$$\tilde{n}(\nu) = \left(\tilde{m} \star \frac{1}{L} \coprod_{\frac{1}{L}}\right) (\nu) \cdot \widetilde{\operatorname{Rect}}_{L}(\nu)$$

La figure de diffraction sera donc celle du réseau continu précédent, périodisée et modulée par $|\widetilde{\mathrm{Rect}}_L(\nu)|^2$. Dans le cas d'une profondeur de modulation égale à 2π , on obtient les ordres de diffractions représentés sur la figure 4.13.

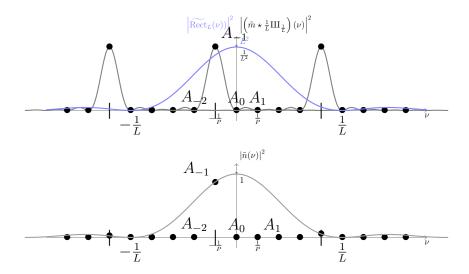


FIGURE 4.13 – Intensité du faisceau diffracté dans le cas de masque de phase de la figure 4.12, avec $\Phi_M=2\pi$ et P=5L.

Cas d'un profil rectangulaire

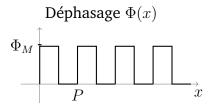


FIGURE 4.14 – Profil spatial d'un réseau en phase, de pas P et de profondeur de modulation Φ_M .

La transformée de Fourier $\tilde{m}(\nu)$ du motif m(x) est toujours obtenue par :

$$\tilde{m}(\nu) = \int_0^P e^{-j\Phi(x)} \cdot e^{-j2\pi\nu x} dx$$

Dans le cas du réseau de la figure 4.14,

$$\begin{split} \tilde{m}(\nu) &= \int_{0}^{\frac{P}{2}} \mathrm{e}^{-j\Phi_{M}} \cdot \mathrm{e}^{-j2\pi\nu x} dx + \int_{\frac{P}{2}}^{P} \mathrm{e}^{-j2\pi\nu x} dx \\ &= \frac{-1}{j2\pi\nu} \mathrm{e}^{-j\Phi_{M}} \left[\mathrm{e}^{-j2\pi\nu x} \right]_{0}^{\frac{P}{2}} + \frac{-1}{j2\pi\nu} \left[\mathrm{e}^{-j2\pi\nu x} \right]_{\frac{P}{2}}^{P} \\ &= \frac{-1}{j2\pi\nu} \mathrm{e}^{-j\Phi_{M}} \left[\mathrm{e}^{-j\pi\nu P} - 1 \right] + \frac{-1}{j2\pi\nu} \left[\mathrm{e}^{-j2\pi\nu P} - \mathrm{e}^{-j\pi\nu P} \right] \\ &= \frac{-1}{j2\pi\nu} \mathrm{e}^{-j\Phi_{M}} \left[\mathrm{e}^{-j\pi\nu P} - 1 \right] + \frac{-1}{j2\pi\nu} \mathrm{e}^{-j\pi\nu P} \left[\mathrm{e}^{-j\pi\nu P} - 1 \right] \\ &= \frac{-\left[\mathrm{e}^{-j\pi\nu P} - 1 \right]}{j2\pi\nu} \cdot \left[\mathrm{e}^{-j\Phi_{M}} + \mathrm{e}^{-j\pi\nu P} \right] \\ &= \frac{-\left[\mathrm{e}^{-j\pi\nu P} - 1 \right]}{j2\pi\nu} \cdot \mathrm{e}^{-j\Phi_{M}} \left[1 + \mathrm{e}^{-j\pi\nu P + j\Phi_{M}} \right] \\ &= \frac{-\left[\mathrm{e}^{-j\pi\nu P} - 1 \right]}{j2\pi\nu} \cdot \mathrm{e}^{-j\Phi_{M}} \cdot \mathrm{e}^{-j\pi\nu \frac{P}{2} + j\frac{\Phi_{M}}{2}} \left[\mathrm{e}^{-\left(-j\pi\nu \frac{P}{2} + j\frac{\Phi_{M}}{2}\right)} + \mathrm{e}^{-j\pi\nu \frac{P}{2} + j\frac{\Phi_{M}}{2}} \right] \\ &= \frac{-\left[\mathrm{e}^{-j\pi\nu P} - 1 \right]}{j2\pi\nu} \cdot \mathrm{e}^{-j\Phi_{M}} \cdot \mathrm{e}^{-j\pi\nu \frac{P}{2} + j\frac{\Phi_{M}}{2}} \left[2\cos\left(-\pi\nu \frac{P}{2} + \frac{\Phi_{M}}{2} \right) \right] \end{split}$$

Les intensités des ordres de diffraction sont proportionnelles à :

$$A_k = \left| \frac{1}{P} \tilde{m} \left(\frac{k}{P} \right) \right|^2$$

Le premier terme dans l'expression de $\tilde{m}(\nu)$ est nulle pour les valeurs paires de k, hormis 0. Pour les termes impairs, le module de ce premier terme est égal à $\frac{P}{k\pi}$.

$$A_k = \left| \frac{1}{k\pi} \cdot \left[2\cos\left(-\frac{k\pi}{2} + \frac{\Phi_M}{2} \right) \right] \right|^2$$

$$A_k = \frac{4}{k^2\pi^2} \cdot \left(\sin\left(\frac{\Phi_M}{2} \right) \right)^2$$

$$A_k = \frac{2}{k^2\pi^2} \cdot (1 - \cos(\Phi_M))$$

Pour calculer l'ordre 0, il faut exprimer le premier terme de l'expression de $\tilde{m}(\nu)$:

$$\frac{-\left[e^{-j\pi\nu P}-1\right]}{j2\pi\nu} = e^{-j\frac{\pi\nu P}{2}} \cdot \frac{-\left[e^{-j\frac{\pi\nu P}{2}} - e^{+j\frac{\pi\nu P}{2}}\right]}{j2\pi\nu}$$
$$= e^{-j\frac{\pi\nu P}{2}} \cdot \frac{-\left[-2j\sin\left(\frac{\pi\nu P}{2}\right)\right]}{j2\pi\nu} = e^{-j\frac{\pi\nu P}{2}} \cdot \frac{P}{2} \cdot \frac{\left[\sin\left(\frac{\pi\nu P}{2}\right)\right]}{\frac{\pi\nu P}{2}}$$

Le module de ce premier terme est donc égal à $\frac{P}{2}$ pour $\nu = 0$.

Le coefficient correspondant à l'ordre 0 a donc comme expression :

$$A_0 = \left(\cos\left(\frac{\Phi_M}{2}\right)\right)^2 = \frac{1}{2}\left(1 + \cos\left(\Phi_M\right)\right)$$

Pour un déphasage maximal de $\Phi_M=2\pi$, seul l'ordre 0 est non nul. Au contraire, pour une profondeur de déphasage $\Phi_M=\pi$, l'ordre 0 est nul.

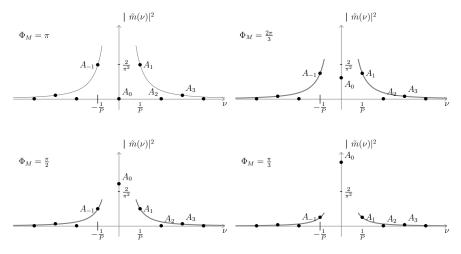


FIGURE 4.15 – Intensité du faisceau diffracté dans le cas de masque de phase de la figure 4.14, pour différentes valeurs de la profondeur de modulation Φ_M

C 5

Speckle : rugosité et diffraction

Version du 11 septembre 2025

Pour vous préparer en amont de la séance : répondre aux questions P1 à P5.

Objectifs pédagogiques. À l'issue de la séance, vous serez capables de :

- réaliser un montage de diffraction et de mesure précise du diamètre de la tache de diffraction,
- mettre en évidence le phénomène de speckle et analyser ses propriétés essentielles.
- lister des utilisations possibles de la présence de speckle dans un système d'imagerie,
- réaliser un montage permettant de diminuer l'influence du speckle afin d'améliorer la qualité des images observées sour éclairage cohérent.

Sommaire

1	Introduction	58
2	Questions préparatoires	63
3	Observations visuelles et propriétés générales	65
4	De la tache d'Airy au speckle pleinement développé	66
5	Étude du speckle dans le plan de Fourier	68
6	Étude du speckle dans un plan quelconque	69
7	Speckle dans l'image d'un objet	70

Remarque Les propriétés générales exposées ci-dessous reprennent les notions vues dans le cours « speckle » de 2^{ème} année.

Pour avoir des notions de bases sur le speckle vous pouvez vous reporter au livre "Optique cohérente : fondements et applications". Werner Lauterborn, Thomas Kurz, Martin Wiesenfeldt, Elsevier Masson, 1997.

Pour des développements plus avancés vous pouvez consulter le livre "Laser speckle and related phenomena", J. C. Dainty Ed., Springer, 1975.

1 Introduction

1.1 Qu'est-ce qu'un champ de speckle?

Réflexion diffuse d'une source blanche. Lorsque l'on éclaire un milieu ou une surface diffusante avec une source blanche, on observe un phénomène de diffusion de la lumière dans toute les directions de l'espace, qui peut éventuellement s'accompagner d'un faisceau qui suivra les lois habituelles de réflexion et de réfraction de la lumière sur une surface plane, la réflexion spéculaire. Plus le matériau sera diffusant plus la quantité de lumière dans le faisceau spéculaire sera faible en proportion des composantes diffusées, jusqu'à sembler disparaitre complètement, la lumière renvoyée par la surface parait alors complètement uniforme (comme vous pouvez vous en rendre compte en regardant les lampes d'éclairage de votre salle ou des couloirs à travers les objets diffusants à votre disposition).

Cas d'une source cohérente. Lorsque le même milieu ou surface est éclairée par le faisceau laser cohérent, la situation change de manière radicale, et l'uniformité de l'éclairement disparait complètement pour laisser la place à une nuée de petits points extrêmement brillants entourés de zones extrêmement noires, l'ensemble étant répartis de manière complètement aléatoire dans tous l'espace où la lumière est diffusée (voir figure 5.1). Cet éclairement aléatoire produit par la transmission ou la réflexion de lumière cohérente sur une surface diffusante est le phénomène de **speckle**. C'est un phénomène qui résulte de la diffraction cohérente de la lumière par une surface diffusante aléatoire.

Speckle objectif et subjectif. On définit en général plusieurs types de structures de speckle. Le speckle peut apparaître naturellement lorsque la lumière réfléchie par un élément diffusant éclaire directement un écran (par exemple le mur de la salle) sans optique d'imagerie. Pour décrire l'éclairement aléatoire sur le mur on parle alors de speckle « objectif ». Lorsque la structure de diffusion est observé à l'aide d'un objectif sur une caméra (ou avec l'œil), elle pourra varier avec les caractéristiques de la lentilles d'observation, on parlera alors de speckle « subjectif ». Il existera bien entendu des architectures mixte mêlant les deux types de speckle objectif et subjectif.

Modélisation. Le phénomène est parfaitement décrit théoriquement par les théories de la diffraction, des interférences et de la cohérence, et de la statistique des variables aléatoires, mais avec des traitements mathématiques qui peuvent être lourds et formellement complexes, si on veut traiter le phénomène de manière rigoureuse. Néanmoins, les principales propriétés de la figure de speckle peuvent être reliées (par le biais de calculs parfois long et fastidieux) à quelles paramètres simples des montages optiques utilisés.

1. Le contraste des grains de speckle peut être extrêmement fort, avec des grains très brillants sur un fond très noir, et déterminé par une statistique de l'éclairement de la structure de speckle donné par une densité de probabilité de la forme d'une exponentielle décroissante

$$p_I(i) = \frac{1}{\langle I \rangle} \exp(-\frac{i}{\langle I \rangle})$$

1. INTRODUCTION 59

avec < I > la valeur moyenne de l'intensité transmise et $p_I(i)$ la densité de probabilité de l'intensité , c'est à dire $P(i_1 < I < i_2) = \int_{i_1}^{i_2} p_I(i) di$

- 2. Plus la taille de la zone éclairée du diffuseur est grande, plus la taille des grains sera petite. La taille des grains de speckle dépend du diamètre d (en m de la zone éclairée du diffuseur. Le diamètre moyen $\phi_{\rm speckle}$ (m) des grains de speckle est égal à la taille de la tache de diffraction d'une optique de pupille équivalente $\phi_{\rm speckle}=1.22\frac{\lambda D}{d}$, où D est la distance entre le diffuseur et le plan d'observation et λ (m) la longueur d'onde de la source.
- 3. L'étendue spatiale du cône de diffusion est donné par la finesse de la structure diffusante et sa statistique plus le diffuseur sera fin plus les grains apparaitront à des angles forts.
- 4. Dans un grain de speckle on peut montrer que la phase de l'onde est constante. Le grain de speckle peut donc être vu comme définissant un plan de cohérence dans le plan d'observation et de manière plus générale un volume de cohérence quand on étend la mesure en dehors de ce plan d'observation. Ce volume de cohérence détermine la forme en 3D du grain de speckle qui sera en général celle d'un grain de riz de diamètre $\phi_{\rm speckle}=1.22\frac{\lambda D}{d}$ et de longueur $z_{\rm speckle}=8\frac{\lambda D^2}{d^2}$. Ce "grain de riz" sera d'autant plus allongé que l'ouverture $(\frac{d}{D})$ du faisceau sera faible.

Au cours de ce TP vous allez étudier les propriétés du Speckle dans différentes configurations représentatives des conditions habituelles d'utilisation. Avant cela, nous allons donner quelques outils mathématiques permettant de décrire les phénomènes que vous observerez.

1.2 Le speckle : en premier lieu un phénomène de diffraction

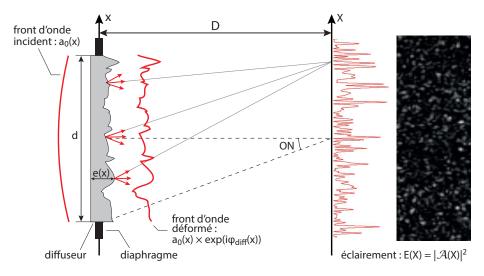


FIGURE 5.1 – Principe de formation d'un champ de speckle.

On obtient une figure de speckle lorsqu'un faisceau de lumière cohérente éclaire un objet diffusant (voir figure 5.1). Dans le cas le plus simple, la transmission en amplitude à travers le diffuseur modifie uniquement la phase de l'onde incidente d'amplitude a_0 . On appelle $t_{\rm diff}$ la transmission complexe en amplitude du diffuseur, définie dans la pupille par

$$t_{\text{diff}}(x) = \exp(i\phi_{\text{diff}}(x)).$$

Remarque Les expressions sont données à une dimension pour simplifier l'écriture, et sont aisément généralisables à deux dimensions. Par ailleurs, même si l'amplitude de l'onde d'éclairage $a_0(x)$ peut être prise quelconque dans le cas général sans difficulté particulière autre calculatoire, on la prendra constante dans la suite du calcul afin de simplifier les expressions.

L'amplitude après le diffuseur est modifiée selon

$$a_0 \to a_0 \times \exp(i\phi_{\text{diff}}(x)) = a_0 t_{\text{diff}}(x).$$

La phase ajoutée au champ lumineux est directement proportionnelle à l'épaisseur locale e(x) du diffuseur : $\phi_{\text{diff}}(x) = \frac{2\pi}{\lambda}(n-1)e(x)$, avec n l'indice de réfraction du matériau. L'amplitude du champ lumineux diffracté en un point donné M dans le plan de Fourier est la transformée de Fourier de $a_0t_{\text{diff}}(x)$, l'amplitude après le diffuseur :

$$\mathcal{A}(X) = a_0 \int_{\text{diffuseur}} t_{\text{diff}}(x) \exp(2i\pi \frac{X}{\lambda D} x) dx.$$
 (5.1)

Les propriétés singulières du champ de speckle $\mathcal{A}(X)$ tiennent toutes au fait que le diffuseur est un objet **rugueux** et que son épaisseur locale peut être traitée comme une **variable aléatoire**. On distingue deux cas, suivant la rugosité du diffuseur.

Rugosité forte : speckle pleinement développé

Dans ce cas, les variations typiques de l'épaisseur locale e(x) sont suffisamment importantes pour que le déphasage aléatoire introduit au niveau du diffuseur « détruise » complètement la phase du champ incident. Ceci se produit lorsque l'écart-type de la distribution de phase $\sigma_{\phi_{\rm diff}}$ est telle que :

$$\sigma_{\phi_{\text{diff}}} = \frac{2\pi}{\lambda} (n-1)\sigma_e > \pi$$

où σ_e est l'écart-type de la distribution d'épaisseur.

La transmission complexe correspond alors à une phase variant très rapidement de manière aléatoire entre $-\pi$ et π . Cette condition entraı̂ne le fait que la valeur moyenne de la transmission est nulle et donc, d'après l'expression (5.1), que l'amplitude du champ de speckle est lui-même nul en moyenne : $\langle \mathcal{A}(X) \rangle = 0$. On parle alors de champ de speckle **pleinement développé**. Il en résulte une figure de diffraction $E(X) = |\mathcal{A}(X)|^2$ composée de « grains » d'éclairement aléatoire que l'on appelle le speckle 1 (voir figure 5.1). Nous verrons dans la suite ce qui détermine la taille de ces grains.

Rugosité faible : speckle partiellement développé

Ici la variation de l'épaisseur reste relativement faible, de sorte que :

$$\sigma_{\phi_{\text{diff}}} = \frac{2\pi}{\lambda} (n-1)\sigma_e < \pi$$

Le déphasage aléatoire introduit par le diffuseur n'est donc pas suffisant pour détruire complètement la phase du champ incident. La figure de diffraction est alors composée d'une partie

^{1.} *Speckle* peut se traduire en français par « petite tache » ou « moucheture ». En physique, on parlera plutôt de granularité ou de tavelure

1. INTRODUCTION 61

déterministe facilement reconnaissable (correspondant à la réflexion ou la transmission spéculaire obtenue en l'absence de diffuseur) et d'une partie aléatoire de type speckle.

Propriétés statistiques du speckle : répartition de l'éclairement et 1.3 taille des grains

Nous considérons ici le cas d'un speckle pleinement développé et d'une observation dans le plan focal d'une lentille. Dans ce cas, la figure de speckle est caractérisée par :

- 1. l'enveloppe de la figure de diffraction,
- 2. la taille caractéristique du grain de speckle.

Dans la suite nous donnons succinctement les résultats essentiels sur ces deux propriétés, à savoir que la répartition de l'éclairement dépend uniquement des propriétés statistiques du diffuseur alors que la taille de grain du speckle est donnée par la taille de la zone éclairée sur le diffuseur (la pupille).

Répartition de l'éclairement dans le plan de Fourier

On note, comme indiqué sur la figure 5.1, A(X) l'amplitude dans le plan de Fourier et $E(X) = |\mathcal{A}(X)|^2$ l'éclairement dans le plan de Fourier. On obtient l'enveloppe de la figure de diffraction par la Transformée de Fourier de l'autocorrélation du diffuseur (c'est-à-dire la densité spectrale de puissance du diffuseur) :

$$\langle E(X) \rangle = \langle |\mathcal{A}(X)|^2 \rangle \propto \text{TF} \left[C_{\text{diff}}(\delta x) \right] \Big|_{u = \frac{X}{\lambda D}}$$

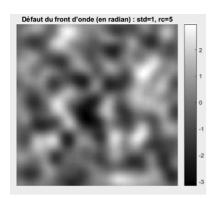
$$\propto \int_{\text{diffuseur}} C_{\text{diff}}(\delta x) \exp(2i\pi \frac{X}{\lambda D} \delta x) \mathbf{d}(\delta x)$$
(5.2)

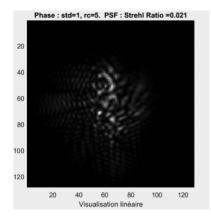
$$\propto \int_{\text{diffusion}} C_{\text{diff}}(\delta x) \exp(2i\pi \frac{X}{\lambda D} \delta x) \mathbf{d}(\delta x)$$
 (5.3)

$$\propto DSP_{\text{diffuseur}}(u) \Big|_{u=\frac{X}{\lambda D}}$$
 (5.4)

où $C_{\text{diff}}(\delta x) = \langle t_{\text{diff}}(x)t_{\text{diff}}(x+\delta x)^* \rangle$ est la fonction d'auto-corrélation du diffuseur, et $t_{\text{diff}}(x)$ est l'amplitude de l'onde après le diffuseur.

Cette expression montre que plus le grain du diffuseur est petit (c'est-à-dire plus les variations spatiales de phases sont rapides ou encore plus le contenu spectral du diffuseur est large), plus l'enveloppe de la figure de diffraction dans le plan de Fourier est large (exactement comme en diffraction par une poussière ou un grain : plus ce grain est petit, plus large est la figure de diffraction). On retrouve aisément ce résultat par une simulation numérique. La figure 5.2 en donne une illustration.

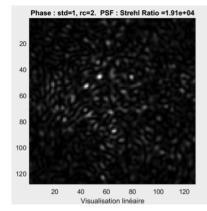




Variation spatiale lente de la phase

Speckle dans le plan de Fourier





Variation spatiale rapide de la phase Speckle dans le plan de Fourier

FIGURE 5.2 – Simulation de la figure de speckle dans le plan de Fourier pour une phase aléatoire de rayon de corrélation plus ou moins grand ($r_c = 5$ ou 2)

Fonction de corrélation spatiale du champ de speckle

La fonction d'auto-corrélation spatiale du champ diffracté $\mathcal{A}(X)$ s'exprime sous la forme :

$$C_{\mathcal{A}}(\delta X) = \langle \mathcal{A}(X)\mathcal{A}(X+\delta X)^* \rangle \propto \int_{\text{diffuseur}} a_0^2 \exp(2i\pi \frac{\delta X}{\lambda D}x) dx$$
, (5.5)

où a_0^2 représente l'éclairement incident limité par la pupille sur le diffuseur. En pratique on ne mesure pas la fonction d'auto-corrélation de l'amplitude du champ mais l'auto-corrélation de l'éclairement : $C_E(\delta X) = \langle E(X)E(X+\delta X)^*\rangle$. Comme l'amplitude du champ diffracté est une variable aléatoire gaussienne 2 , la fonction d'auto-corrélation de l'éclairement peut être directement reliée à celle de l'amplitude par le théorème de Wick :

$$C_E(\delta X) \propto C_A(\delta X)^2 + \langle E(X) \rangle^2$$
 (5.6)

Ce résultat montre que la taille moyenne du grain de speckle et sa forme ne dépendent que de la pupille utilisée dans le plan du diffuseur. Plus la pupille est petite, plus grand est le grain

^{2.} Cette propriété découle directement de la relation (5.1) et du fait que $\phi_{\text{diff}}(x)$ est elle-même une variable aléatoire gaussienne.

de speckle (exactement comme pour la tache de diffraction par une pupille quelconque dans le plan de Fourier). On retrouve aisément ce résultat par une simulation sous Matlab. Une illustration en est donnée sur la figure 5.3



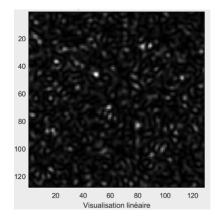


FIGURE 5.3 – Simulation de la figure de speckle obtenue pour une pupille circulaire de diamètre 0.5 (à gauche) ou 1 (à droite), U.A.

1.4 Résumé des propriétés du speckle

Finalement, il faut retenir les deux propriétés suivantes :

- les propriétés statistiques de l'objet diffusant déterminent la répartition globale des grains de speckle dans le plan d'observation (l'enveloppe de la figure de diffraction),
- 2. la forme de la pupille détermine la dimension des grains de speckle (plus la pupille est petite, plus le diamètre moyen des grains de speckle est grand, et inversement).

Nous étudierons plus particulièrement le speckle dans trois configurations :

- 1. dans le plan de convergence du champ incident, c'est-dire dans le plan de Fourier (diffraction de Fraunhofer);
- 2. dans un plan quelconque (diffraction de Fresnel);
- 3. dans le plan conjugué par une lentille de l'objet diffusant.

2 Questions préparatoires

La figure 5.4 représente la phase de l'onde après un diffuseur et son auto-corrélation empirique. La phase étant de nature aléatoire, la phase représentée correspond à une réalisation particulière.

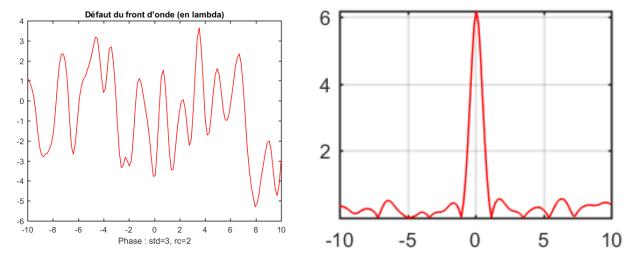


FIGURE 5.4 – A gauche : un profil de la phase de l'onde après un diffuseur. A droite : auto-corrélation (empirique) correspondante. U.A.

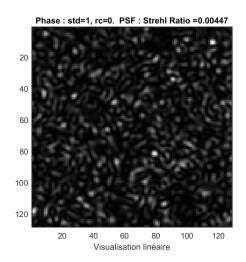
En vous aidant de l'introduction, répondre aux questions suivantes :

P1 Si la phase varie spatialement plus lentement, la fonction d'auto-corrélation sera-t-elle plus étroite ou plus large? Quel est le lien avec le rayon de corrélation $r_{\rm c}$ du diffuseur?

P2 Rappeler la relation entre la densité spectrale de puissance de la phase et sa fonction d'auto-corrélation.

P3 En pratique, quel est le calcul numérique à effectuer pour obtenir la fonction d'auto-corrélation empirique de la phase représentée en figure 5.4?

La figure 5.5 représente l'image d'un speckle pleinement développé et son auto-corrélation.



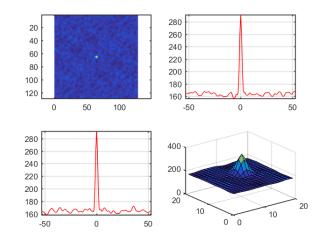


FIGURE 5.5 – A gauche : figure de speckle pleinement développé obtenu à l'aide d'une source cohérente éclairant un verre dépoli. A droite : autocorrélation empirique 2D et profils 1D horizontaux et verticaux correspondant à la figure de speckle. Les axes sont gradués en pixels de la caméra d'acquisition.

P4 Si les grains de speckle sont plus gros, la fonction d'auto-corrélation sera-t-elle plus étroite ou plus large? Expliquer pourquoi la largeur de la fonction d'auto-corrélation permet de déterminer la dimension caractéristique des grains de speckle.

P5 Montrez, en vous appuyant sur l'équation (5.5) que la dimension caractéristique des grains de speckle dépend de l'ouverture numérique ON = d/2D où d est le diamètre du disque d'éclairement du diffuseur et D la distance entre le diffuseur et le plan image (vous définirez la taille du grain par la distance entre les deux premiers zéros de la fonction d'auto-corrélation).

3 Observations visuelles et propriétés générales

3.1 Observation dans le plan de Fourier

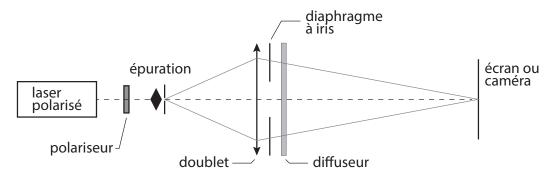


FIGURE 5.6 – Schéma du montage à réaliser pour observer la figure de speckle dans le plan de Fourier.

Vous allez réaliser le montage schématisé sur la figure 5.6. Vous veillerez à bien régler le trou d'épuration au foyer de l'objectif de microscope afin d'obtenir un éclairement le plus homogène possible sur le diffuseur.

Pour les différents diffuseurs proposés (le numéro correspond à la « finesse » des grains observables à l'œil sur les diffuseurs), observez la figure de speckle sur un écran que vous aurez placé dans le plan de focalisation du champ incident par un doublet, comme indiqué sur la figure 5.6.

- **Q1** Étudiez en particulier le dépoli n°1 (rectangulaire) et observez la figure de speckle pour différentes zones d'éclairement. S'agit-il de figures de speckle pleinement développé? Comment peut-on repérer à l'œil les différentes zones sur le dépoli?
- **Q2** Le dépoli n°1 est divisé en 3 zones. Dans chaque zone, la rugosité a été mesurée et est donnée en annexe. Commentez les observations visuelles en utilisant ces mesures.
- **Q3** Mesurez la largeur de l'enveloppe de la figure de diffraction pour trois diffuseurs. En déduire un ordre de grandeur du rayon de corrélation r_c de chacun de ces diffuseurs.

3.2 Observation dans un plan quelconque

Rapprochez le diffuseur du point de focalisation. Observez la figure de speckle sur un écran derrière le diffuseur.

- **Q4** Rappelez quels paramètres influent sur la dimension des grains de speckle. Rappelez le lien avec la limite de la diffraction et l'ouverture numérique. Sur le montage devant vous, quels éléments définissent l'ouverture numérique?
- **Q5** Expliquez ce qui se passe lorsque le diffuseur se trouve au point de focalisation. Déduisezen une méthode simple pour focaliser un faisceau laser sur une surface rugueuse.

4 De la tache d'Airy au speckle pleinement développé

4.1 Étude de la tache d'Airy

On réalise maintenant les observations à l'aide de la caméra CMOS.

- En l'absence de diffuseur, conjuguez soigneusement le trou source et le plan de la matrice CMOS de la caméra μ Eye.
- Placez un diaphragme calibré de $3 \,\mathrm{mm}$ de diamètre précisément à $1 \,\mathrm{m}$ de la caméra. Dans toute la suite, vous resterez dans la même configuration (sauf demande explicite) afin de pouvoir comparer les résultats avec et sans speckle.
- Utilisez le logiciel de la caméra μ Eye pour acquérir et sauvegarder en bitmap (.bmp) les images (une notice d'utilisation est à votre disposition). Veillez à ce que le gain soit toujours réglé au minimum et qu'il n'y ait pas de correction de gamma. Les images ne

devront jamais être saturées. Pour cela, vous pourrez régler l'intensité du laser grâce au polariseur ainsi que le temps d'intégration de la caméra (onglet *caméra* du logiciel d'acquisition).

— Lancez Matlab et exécutez le code suivant (ouvre et affiche l'image sauvegardée) :

```
>> img = ouvre_image;
```

Pour mesurer le diamètre de la tache d'Airy, vous disposez de fonctions sous Matlab : fit_airy_vert et fit_airy_hor. Elles permettent d'obtenir un profil horizontal ou vertical en moyennant l'image de la tache sur quelques pixels. Le profil est ensuite ajusté par la fonction d'Airy. (Le diamètre est donné en pixel dans la fenêtre de commande. Double-cliquer dans le rectangle pour terminer la sélection.)

Q6 Mesurez le diamètre de la tache d'Airy obtenue et comparez celui-ci avec la limite de diffraction. Si vous constatez un écart important, reprenez votre montage.

Remarque On demande ici des mesures quantitatives. Vous devez en particulier déterminer soigneusement l'ouverture numérique image de votre configuration.

La tache obtenue correspond à la réponse percussionnelle du système optique (ou fonction d'étalement de point (FEP), ou encore PSF pour *Point Spread Function* en anglais). Sa transformée de Fourier est donc la fonction de transfert de modulation (FTM).

Q7 Rappelez l'allure de la FTM idéale en supposant l'éclairement uniforme au niveau du diaphragme. Que vaut la fréquence de coupure théorique en fonction de l'ouverture numérique? Pour le calcul de la FTM et son affichage, vous utiliserez la routine :

```
>> ftm = fft_image_airy(img);
```

qui calcule le module de la transformée de Fourier de la FEP sur 512×512 pixels, et affiche le résultat ainsi que le profil horizontal de la FTM au centre.

Remarque Afin d'obtenir un résultat acceptable, il faut absolument réduire au maximum les sources d'erreur dues à la lumière parasite et à la saturation de la caméra. Il faut en particulier acquérir les images dans le noir complet (écran d'ordinateur éteint).

- **Q8** Commentez l'allure de la FTM obtenue.
- **Q9** Le pas d'échantillonnage des images acquises est égal à la dimension d'un pixel de la matrice CMOS, soit $5,3\,\mu\mathrm{m}$. Déduisez-en le pas d'échantillonnage en fréquence pour la FTM. Comparez la fréquence de coupure de la FTM calculée et la fréquence de coupure idéale d'un système optique limité par la diffraction.

4.2 Diffuseur faible

- Placez le diffuseur n°1 entre la pupille et la caméra de manière à observer un speckle plus ou moins développé sur la caméra.
- Tracez les FTM correspondantes en utilisant le même code que précédemment.

Remarque Afin d'obtenir une FTM facilement exploitable dans le cas partiellement développé, il est conseillé de choisir la zone où la tache d'Airy est peu affectée par le dépoli (le speckle est à peine visible si l'on ne sature pas la caméra).

Q10 Comparez et commentez les FTM ainsi obtenues. Comparez en particulier les valeurs des fréquences de coupure. Sont-elles égales? Pourquoi?

5 Étude du speckle dans le plan de Fourier

Dans toute la suite, vous utiliserez une zone du diffuseur n°1 telle que le speckle soit pleinement développé.

5.1 Dimension des grains de speckle

Observez et étudiez une figure de speckle pleinement développé en restant dans la configuration précédente.

Remarque On demande toujours ici des mesures quantitatives qui doivent être comparées aux observations faites à la partie précédente. En cas de changement effectué sur votre montage, veillez à mesurer à nouveau soigneusement l'ouverture numérique de votre configuration.

- Estimez d'abord un ordre de grandeur du diamètre moyen des grains de speckle en utilisant l'image du speckle pleinement développé.
- Effectuez la mesure quantitative basée sur la fonction d'auto-corrélation de la figure de speckle.

La fonction d'auto-corrélation de la figure de speckle peut être obtenue simplement en passant par la transformée de Fourier. Là encore, vous pouvez utiliser la routine :

```
>> autocorr = autocorrelation(img);
```

qui calcule la fonction d'auto-corrélation en effectuant la transformée de Fourier inverse de la densité spectrale de puissance, elle-même obtenue comme le module carré de la transformée de Fourier de l'image, prise sur 512×512 pixels. La routine affiche également le résultat. Vous utiliserez ensuite l'une des fonctions profil_moyen_hor ou profil_moyen_vert pour mesurer la largeur de la fonction d'auto-corrélation.

Q11 Comparez le diamètre de la fonction d'auto-corrélation avec le diamètre moyen des grains de speckle estimé précédemment et avec le diamètre de la tache de diffraction pour la même ouverture. Vérifiez que le résultat est compatible avec ce qui est attendu (question **P5**).

5.2 Déplacement de la figure de speckle dans le plan de Fourier

Pour un grand diaphragme de $10\,\mathrm{mm}$, déplacez le diffuseur latéralement et observez la figure de speckle.

Q12 La figure de speckle se déplace-t-elle? Donnez une interprétation simple utilisant une propriété de la transformée de Fourier.

6 Étude du speckle dans un plan quelconque

Retirez simplement le doublet du montage.

6.1 Dimension des grains de speckle

Mesurez, comme dans la partie précédente, la taille des grains de speckle. Pensez à bien mesurer l'ouverture numérique ON = d/2D où d est le diamètre du disque d'éclairement du diffuseur, et D la distance entre le diffuseur et le plan image.

Q13 Comparez la taille des grains mesurée avec la limite de diffraction pour la même ouverture. Commentez.

6.2 Déplacement de la figure de speckle dans un plan quelconque

Au vu du paragraphe 5.2, il semble que le front de phase incident au niveau du diffuseur n'ait pas d'influence sur les propriétés de la figure de speckle. En fait ceci n'est vrai que sur les valeurs statistiques moyennes du speckle (comme l'auto-corrélation) et le front de phase est directement impliqué dans la répartition des grains pour une réalisation particulière. On peut observer cet effet en regardant le déplacement de la figure de speckle lorsque l'on déplace le diffuseur. Toujours en l'absence de doublet, déplacez le diffuseur latéralement en utilisant la monture munie d'une vis de translation latérale.

- Q14 La figure de speckle se déplace-t-elle?
- **Q15** Expliquez qualitativement pourquoi le déplacement du speckle est simplement relié au déplacement du diffuseur suivant le théorème de Thalès : le rapport des déplacements est égal au rapport des distances respectives au trou source. À partir de cette propriété générale, retrouvez la propriété de déplacement dans le plan de Fourier.
- **Q16** Expliquez comment l'on peut déduire le déplacement de la figure de speckle en utilisant la fonction d'inter-corrélation entre images.

Vous pouvez calculer cette dernière à l'aide de Matlab en exécutant la fonction suivante :

```
>> intercorr = intercorrelation(img1,img2);
```

qui effectue directement les transformées de Fourier sur 1024×1024 pixels puis affiche l'intercorrélation.

Q17 Effectuez le calcul du déplacement de la figure de speckle pour un petit déplacement du diffuseur inférieur au mm et mesurée sur le vernier de la vis micrométrique. Vérifiez que la valeur obtenue est bien celle attendue.

7 Speckle dans l'image d'un objet

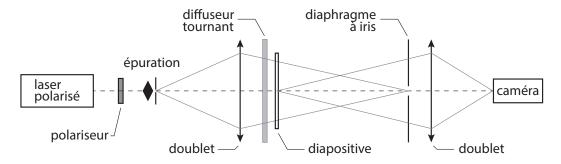


FIGURE 5.7 – Schéma du montage à réaliser pour observer le speckle dans l'image d'un objet.

Réalisez le montage d'imagerie schématisé sur la figure 5.7. La diapositive est imagée sur la matrice CMOS. Lorsque le diffuseur est immobile, l'image obtenue est très bruitée.

Q18 Comment évolue le speckle dans l'image lorsque l'on change la taille du diaphragme à iris (en amont du second doublet)?

Observez l'image obtenue en augmentant progressivement la vitesse de rotation du dépoli.

Q19 Comment expliquer simplement l'amélioration de l'image sur l'écran?

Ajoutez un second diffuseur (immobile) devant ou derrière le diffuseur tournant et observez l'image obtenue en augmentant progressivement la vitesse de rotation du diffuseur tournant.

Q20 Expliquez le rôle et l'intérêt du second diffuseur.