IOGS: A high-level scientific education with a strong practical component

Since the creation of the Institut d’Optique Graduate School (IOGS) in 1917, future engineers in photonics are trained by emphasizing practical work.

The Experimental Teaching Laboratory (LEnsE, for Laboratoire d’ENSeignement Expérimental) has always been a major structure of the engineering school and offers remarkably strong training that contributes 25% of the total curriculum. It is an impressive structure where students have access to a large diversity of material and human resources to be able to gain the skills to become excellent experimenters recognized in their field.

Currently, the LEnsE has approximately 150 scientific experimentation stations on three sites, which enable the implementation of a rich and stimulating curriculum through experimentation. Future graduates acquire both a technical and scientific culture that allows them to be immediately operational in an industrial R&D or academic lab. Their training is enriched by the confrontation of experimental physics with advanced theoretical models. Practical work and projects are privileged moments to analyze physical phenomena in depth.

The richness of the LEnsE, built up over its long history, is based on its 80 contributors. The teachers, researchers and engineers who participate in the LEnsE education know that they can count on the support and expertise of an engineer and three technicians to launch new scientific, pedagogical and experimental adventures every year!  The LEnsE is  in constant interaction with research laboratories and industrial companies. The list of experiments proposed to the students evolves each year.

The subjects of the practical curriculum cover all aspects of photonics: production of light (lighting or lasers), measurement (photometry, colorimetry),  detection (visible or IR detectors, matrix or not), properties (wave optics, polarization, quantum optics), manipulation (instrumental optics, optical fibers, non-linear optics), industrial application devices for telecommunications (defense, biomedical, etc.). The training program is always kept up to date, in strong relation with edge-front advances and research in all the fields of optics and photonics (quantum technologies, solid-state photonics, sustainable technologies, …) – let’s for instance point out new experiments in biophotonics that have been designed in 2020. These aspects are complemented by training in modern electronic information processing technologies.

Resources in english

Some lab texts are available in english :

TPs Aberrations | Aberrations lab work
 Objectifs pédagogiques | learning goals  A l’issue des 4 séances de travaux pratiques, les étudiant·e·s sont capables de : Mettre en œuvre des méthodes de caractérisation des systèmes d’imagerie optique. Ces méthodes incluent la méthode du point lumineux (star test),
TPs Détecteurs & bruits | Detectors and noise lab work
Objectifs pédagogiques | Learning goals A l’issue des 4 séances de travaux pratiques, les étudiant·e·s sont capables de : proposer un protocole de mesures pour évaluer les performances électro-optiques d’un détecteur, quel que soit son format (monoélément ou matrice)  identifier
TPs Photométrie | Photometry lab work
Programme Ph1 – Mesures de luminances et d’intensités lumineuses  | Mesuring luminance Ph2 – Rayonnement du corps noir. Performances des lampes pour l’éclairage | Black body radiation. Performance of Lighting sources Ph3 – Mesures des caractéristiques photométriques de systèmes optiques
TPs Laser | Laser lab work
Programme L1 – Laser Nd:Yag pompé par diode laser  | Diode pumped Nd:Yag Laser L2 – Diode Laser | Laser diode L3 – Amplificateur et oscillateur laser à fibre | Optical fiber amplifier ans oscillator L4 – Doublement de fréquence
TPs Polarisation | Polarization lab work
Programme P1  – Polarisation : Composants et méthodes d’analyse | Polarization : Components and methods of analysis P2  – Mesures de biréfringence | Birefringence experiments P3 –  Polarimètre à analyseur tournant | Analysis of polarization states using a rotating analyzer
TPs Imagerie 1 | Imaging systems 1 lab work
Sujets D1 – Interférométrie de Speckle | Speckle Pattern Interferometry DSPI. (S1.28) D2 –  Sonde homodyne et sonde hétérodyne | Homodyne sensor & Heterodyne sensor(R1.55) D3 – Synthèse et réalisation d’éléments optiques diffractifs simples (S1.20) D4  – Modulateur spatial de
TPs Photonique Quantique | Quantum photonics lab work
Programme P1 – Photons intriqués et inégalités de Bell | Entangled photons and Bells inequality P2 – Spectroscopie sub-doppler par absorption saturée P3 – Source de photons uniques. Effet H.O.M. | Hong, Ou and Mandel experiment P4 – Génération de
TPs Technologies Laser avancées | Advanced Laser Technologies
Programme L1 -Construction et caractérisation d’un laser picoseconde pompé par diode | Construction and characterization of a diode-pumped picosecond laser(R1.58) L2 – OPO et laser à saphir dopé au titane | Optical Parametric Oscillator and Titanium-doped Sapphire Laser (R1.62) L3 –  Laser
TPs Fibres et télecommunications optiques | Optical Fibers and telecommunications lab work
Sujets F1 – Dispersion chromatique |Chromatic Dispersion (N1.6) F2 – Gyroscope à fibres optiques | Fiber optic gyroscope (N1.6) F3 – Réflectométrie résolue en temps | Optical time domain reflectometry (OTDR) (N1.6) F4 – Bruit dans un amplificateur optique|Noise figure of an